chunkify
v5.0.0
Published
Split an iterable into evenly sized chunks
Downloads
5,964
Maintainers
Readme
chunkify
Split an iterable into evenly sized chunks
Install
npm install chunkify
Usage
import chunkify from 'chunkify';
console.log([...chunkify([1, 2, 3, 4], 2)]);
//=> [[1, 2], [3, 4]]
console.log([...chunkify([1, 2, 3, 4], 3)]);
//=> [[1, 2, 3], [4]]
API
chunkify(iterable, chunkSize)
Returns an iterable with the chunks. The last chunk could be smaller.
iterable
Type: Iterable
(for example, Array
)
The iterable to chunkify.
chunkSize
Type: number
(integer)
Minimum: 1
The size of the chunks.
Use-cases
Batch processing
When dealing with large datasets, breaking data into manageable chunks can optimize the batch processing tasks.
import chunkify from 'chunkify';
const largeDataSet = [...Array(1000).keys()];
const chunkedData = chunkify(largeDataSet, 50);
for (const chunk of chunkedData) {
processBatch(chunk);
}
Parallel processing
Dividing data into chunks can be useful in parallel processing to distribute workload evenly across different threads or workers.
import {Worker} from 'node:worker_threads';
import chunkify from 'chunkify';
const data = [/* some large dataset */];
const chunkedData = chunkify(data, 20);
for (const [index, chunk] of chunkedData.entries()) {
const worker = new Worker('./worker.js', {
workerData: {
chunk,
index
}
});
}
Network requests
Splitting a large number of network requests into chunks can help in managing the load on the network and preventing rate limiting.
import chunkify from 'chunkify';
const urls = [/* Array of URLs */];
const chunkedUrls = chunkify(urls, 10);
for (const chunk of chunkedUrls) {
await Promise.all(chunk.map(url => fetch(url)));
}