npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

calendar-tiler

v1.0.3

Published

Algorithm for tiling a calendar filled with appointments

Downloads

863

Readme

Calendar Tiler

An algorithm for aesthetically displaying appointments/events on a calendar, implemented in JavaScript.

Table of Contents

Why

At work we needed a way to display the calendars of many users all at once and have the appointments/events/visits/what-have-you render in a clean and aesthetically pleasing way. So I designed what I thought was a good algorithm and then eventually realized there were several variations that could be made to give different visual flavors.

Usage

CalendarTiler is written in ES5 following the Universal Module Definition (UMD) so that it can be used in the browser or in Node.js without needing to do any extra work. All the code exists in a single file,

calendar-tiler/calendarTiler.js

Installation

Using npm: calendar-tiler

npm install calendar-tiler

API

There's only one public facing function, calendarTiler.tileAppointments, it can be called with two parameters,

  1. appointments (Required) (Type: Array[Object]) objects to be tiled, each appointment needs to include 2 properties,
    1. <START_VALUE> (Type: Number) specifying the start of the appointment
    2. <END_VALUE>/<DURATION_VALUE> (Type: Number) specifying the end of the appointment (or the duration of the appointment), note that if you are not using durational units, then <END_VALUE> must be greater than <START_VALUE> and if you are using durational units then <DURATION_VALUE> must be greater than 0.
  2. tileParameters (Type: Object) that has 4 properties,
    1. start (Type: String - Default Value: 'start') which specifies the property <START_VALUE> for each appointment (e.g. 'start', 'startTime', 'startingTime', etc.)
    2. delineator (Type: String - Default Value: 'end') which specifies the property <END_VALUE>/<DURATION_VALUE> for each appointment (e.g. 'end', 'endTime', 'endingTime', 'duration', 'appointmentLength' etc.)
    3. usesDuration (Type: Boolean - Default Value: false) which specifies that the delineator represents a durational unit as opposed to a time unit.
    4. tilingMethod (Type: String - Default Value: 'fillSpace') which specifies the way the appointments are tiled
      1. 'balanced' this indicates that each appointment should have the same width, it's the fastest of the three options since there are no graph calculations to make, though some of the appointments may not be as wide as they can be, which may leave the layout looking a little sparse in some cases.
      2. 'fillSpace' this indicates that each appointment should take up as much space as it possibly can while retailing a space efficient layout. It's slower than balanced since there are graph calculations to make, but it produces arguably the most aesthetically pleasing result of the three options.
      3. 'timeRespective' this indicates that appointments with later start times should always appear as far to the left as possible. It's the slowest of the three options and the layout it produces is somewhat of an acquired taste (straight up ugly in cases with large numbers of appointments. Combining this with the slowness in computation using this method, makes me suspicious that reality has some inherent aesthetic bias towards other methods), but it's the most rigidly ordered of the three options.

The output is a single object with 2 properties,

  1. sortedAppointments (Type: Array[Object]) containing the input appointments sorted into a new array by start ascending and end descending
  2. positions (Type: Array[Object]) in the same order as the sortedAppointments order, each member contains 4 properties
    1. x (Type: Number) the x-coordinate for where the sorted appointment should be placed on the x-axis
    2. dx (Type: Number) the width for how wide the sorted appointment should be on the x-axis
    3. y (Type: Number) the y-coordinate for where the sorted appointment should be placed on the y-axis (note is this just start of the appointment)
    4. dy (Type: Number) the height for how tall the sorted appointment should be on the y-axis (note this is just end - start or duration for the appointment)

Please note that the x and dx values are normalized between 0 and 1, while the y and dy keep the units of the input appointments.

Examples

Please consult the example files to see the full process in action and to see how it could be used from start to finish.

Using Default Tile Parameters

    var appointments = [{
            start: 0,
            end: 12
        }, {
            start: 13.25,
            end: 19.5
        }, {
            start: 4.5,
            end: 6.75
        }],
        tiling = calendarTiler.tileAppointments(appointments);

    /*  Outputs:
        tiling = {
            sortedAppointments: [{
                start: 0,
                end: 12
            }, {
                start: 4.5,
                end: 6.75
            }, {
                start: 13.25,
                end: 19.5
            }],
            positions: [{
                x: 0,
                dx: 0.5,
                y: 0,
                dy: 12
            }, {
                x: 0.5,
                dx: 0.5,
                y: 4.5,
                dy: 2.25
            }, {
                x: 0,
                dx: 1,
                y: 13.25,
                dy: 6.25
            }]
        }
    */

Passing User Defined Tile Parameters

    var appointments = [{
            startingTime: 0,
            duration: 12
        }, {
            startingTime: 13.25,
            duration: 6.25
        }, {
            startingTime: 4.5,
            duration: 2.25
        }],
        tileParameters = {
            start: `startingTime`,
            delineator: `duration`,
            usesDuration: true,
            tilingMethod: `balanced`
        },
        tiling = calendarTiler.tileAppointments(appointments);

    /*  Outputs:
        tiling = {
            sortedAppointments: [{
                startingTime: 0,
                duration: 12
            }, {
                startingTime: 4.5,
                duration: 2.25
            }, {
                startingTime: 13.25,
                duration: 6.25
            }],
            positions: [{
                x: 0,
                dx: 0.5,
                y: 0,
                dy: 12
            }, {
                x: 0.5,
                dx: 0.5,
                y: 4.5,
                dy: 2.25
            }, {
                x: 0,
                dx: 1,
                y: 13.25,
                dy: 6.25
            }]
        }
    */

Algorithm Preface

NOTE: All following psuedocode will use 1-based indexing on Lists/Arrays/Enumerable Collections (I don't feel like writing list.Length - 1 or array.Length - 1 a thousand times)

The algorithm works by accepting an array of appointments A as an input, where each appointment a has a start value a.start and an end value a.end. In principal a.start and a.end can be any real valued numbers with a.start < a.end (however 0 <= a.start < a.end <= 24 is an obvious use case).

NOTE: Through abuse of notation, collection[a] means collection[i] where a = A[i]

The goal of the algorithm is to produce an array called positions which for each appointment a in A contains a 4-dimensional vector position[a] = {x, dx, y, dy} where

  • x is the horizontal position of the appointment a
  • dx is the width of the appointment a
  • y is vertical position of the appointment a (Note: This is given by a.start)
  • dy is the height of the appointment a (Note: This is either given by a.end, or it can be easily computed as a.end - a.start if inputs are not durational units.)

As previously noted, for each a in A, positions[a].x and positions[a].dx values are normalized between 0 and 1, while the positions[a].y and positions[a].dy keep the units of the input appointments.

0 <= positions[a].x < 1
0 < positions[a].dx <= 1

The idea being that each appointment a can then be placed on the 2-dimensional (x, y) plane with the following set of points corresponding to a box that represents each appointment a (from upper-left, upper-right, lower-right, lower-left) in clockwise fashion,

{
    (positions[a].x, positions[a].y),
    (positions[a].x + positions[a].dx, positions[a].y),
    (positions[a].x + positions[a].dx, positions[a].y + positions[a].dy),
    (positions[a].x, positions[a].y + positions[a].dy)
}

So how do we go about producing positions? Since positions[a].y and positions[a].dy are already given (or easily computed using the a.start and a.end we only need to find positions[a].x and positions[a].dx for each a in A.

Algorithm Overview

NOTE: We'll also assume that for each appointment a, a.end is using absolute units (as opposed to duration units).

Regardless of the selected tiling method (balanced, fill space or time respective), the first step is always the same, the appointments are sorted in ascending fashion by start time and then in descending fashion by end time/duration should they have equal start times. After the sorting occurs we initialize the positions array as follows,

InitializePositions(A)
 IN: A - An array of appointments each with a start and an end property,
 	     which are decimal numbers such that, start < end.
 OUT: postions - An array (with the same length as A) of 4-tuples, (x, dx, y, dy).
 				 Each of x, dx, y and dy are decimal numbers where,
                 0 <= x < 1 and 0 < dx <= 1
 1. SET positions = new Array[A.Length]
 2. SET A = CALL A.Sort(CompareAppointments)
 3. FOR i = 1 TO A.Length DO
 4.     SET positions[i] = {
 5.         x: 0,
 6.         dx: 1,
 7.         y: A[i].start,
 8.         dy: A[i].end - A[i].start
 9.     }
10. ENDFOR
11. RETURN positions

CompareAppointments(appointment1, appointment2)
 IN: appointment1, appointment2 - Appointments with start and end properties where,
 	 							  start and end are decimal numbers such that start < end.
 OUT: isLessThan - A boolean value which is TRUE if appointment1 <= appointment2 and FALSE otherwise.
 1. SET isLessThan = FALSE
 2. IF appointment1.start < appointment2.start THEN
 3. 	isLessThan = TRUE
 4. ELSE IF appointment1.start == appointment2.start AND appointment1.end >= appointment2.end THEN
 5. 	isLessThan = TRUE
 6. ENDIF
 7. RETURN isLessThan

After the initialization step, we move onto one of 3 subroutines each corresponding to one of the 3 different tiling method.

The balanced and fill space tiling methods both begin the same way. We generate an array of columns, each column is an array of appointments which are stacked on top of each other, with new columns being generated when an appointment cannot be stacked in a previous column without a collision between another appointment in that column. Details for the procedure to construct said columns can be found here Building Columns.

The time respective method generates what can best be described as alignments as opposed to the columns in the other methods. The alignments are a series of rules which describe how one appointment "locks in" other appointments with respect to the appointments before and after it in the sort order. Details for the procedure to construct said alignments can be found here Building Alignments.

In the case of the balanced method the x and dx values are easily computed using the columns by proceeding as follows,

CalcuatePositionsForBalancedTilingMethod(positions, columns)

 1. SET columnsLength = columns.Length
 2. FOR i = 1 TO columns.Length DO
 3.     FOR j = 1 TO columns[i].Length
 4.         SET positions[i].x = i / columnsLength
 5.         SET positions[i].dx = 1 / columnsLength
 6.     ENDFOR
 7. ENDFOR

At this point the balanced method is finished and positions is complete. The user could now display the appointments on screen using the given positions array.

In the case of the fill space and time respective methods, it's a bit more complicated. The first step is to create two Directed Acyclic Graphs (DAG for short) using either the columns or alignments. The procedures for building these can be found in Building Fill Space Directed Acyclic Graphs and Building Time Respective Directed Acyclic Graphs respectively. The first DAG, will be referred to as backward and is constructed by moving through the columns or alignments backwards. The second DAG, will be referred to as forward and is constructed by moving through the columns in ascending fashion.

The reason for needing two DAGs is simple, we need to find the longest chain of colliding appointments for which a is a part of for each a in A.

Once the two DAGs are constructed, we build a Topological Ordering on the vertices in each DAG so that they can be easily traversed to find the longest path through a in each DAG for each a in A. Then we generate the distinct longest traversals as follows,

GenerateLongestDagTraversals(positions, dags)
 1. SET longestDagTraversals = new List
 2. SET traversalKeys = new Map
 3. SET longestDagTraversal = NULL
 4. SET traversalKey = NULL
 5. FOR i = 1 TO positions.Length
 6.     SET longestDagTraversal = dags.backward.GetLongestTraversalThroughVertex(i).Reverse()
 7.     longestDagTraversal.Add(i)
 8.     longestDagTraversal.AddRange(dags.forward.GetLongestTraversalThroughVertex(i))
 9.     SET traversalKey = longestDagTraversal.Join(',')
10.     IF traversalKeys.Find(traversalKey) != NULL
11.         traversalKeys.Add(traversalKey, TRUE)
12.         longestDagTraversals.Add(longestDagTraversal)
13.     ENDIF
14. ENDFOR
15. RETURN longestDagTraversals.Sort(CompareDagTraversalLengths)

CompareDagTraversalLengths(dagTraversal1, dagTraversal2)
 1. RETURN dagTraversal2.Length > dagTraversal1.Length

List.Join(delineator)
 1. SET joined = new String
 2. FOR i = 1 TO THIS.Length
 3.     joined.Concatenate(THIS[i].ToString())
 4.     IF i < THIS.Length
 5.         joined.Concatenate(delineator)
 6.     ENDIF
 7. ENDFOR
 8. RETURN joined

The point of doing this is, is so that we can easily assign an x and dx value to each appointment based on its position in the traversals. The procedure for doing this is as follows,

CalcuatePositionsUsingLongestDagTraversals(positions, longestDagTraversals)
 1. SET a = NULL
 2. SET beforeA = NULL
 3. SET x = 0
 4. SET dx = NULL
 5. FOR i = 1 TO longestDagTraversals.Length
 6.     SET traveral = longestDagTraversals[i]
 7.     FOR j = 1 TO traversal.Length
 8.         SET a = traversal[j]
 9.         IF j > 1
10.             SET beforeA = traversal[j - 1]
11.             SET x = positions[beforeA].x + positions[beforeA].dx
12.         ELSE
13.             SET x = 0
14.         ENDIF
15.         SET dx = CalculateBlockingDx(positions, traversal, j, x)
16.         IF positions[a].x == 0
17.             SET positions[a].x = x
18.             IF dx != NULL
19.                 SET positions[a].dx = dx
20.             ELSE
21.                 SET positions[a].dx = CalculateNonBlockingDx(positions, traversal)
22.             ENDIF
23.         ENDIF
24.     ENDFOR
25. ENDFOR

CalculateBlockingDx(positions, traversal, index, x)
 1. FOR i = index + 1 TO traversal.Length
 2.     IF positions[traversal[i]].x == 0
 3.         RETURN positions[traversal[i]].x - x) / (i - index)
 4.     ENDIF
 5. ENDFOR
 6. RETURN NULL

CalculateNonBlockingDx(positions, traversal)
 1. SET unset = 0
 2. SET dx = 0
 3. FOR i = 0 TO traversal.Length
 4.     IF positions[traversal[i]].dx < 1
 5.         SET dx = dx + positions[traversal[i]].dx
 6.     ELSE
 7.         INCREMENT unset
 8.     ENDIF
 9. ENDFOR
10. IF unset == 0
11.     SET unset = 1
12. ENDIF
13. RETURN (1 - dx) / unset

The essence of this procedure is trying to fill out the longest traversals first to ensure these appointments receive the proper x and dx values first. If there are appointments ahead of a given appointment a in the traversal which have has their x and dx values then a will have restricted x and dx values. If there are no appointments ahead of a in the traversal which have already been assigned x and dx values then we need to provision space for those appointments so they will have enough space when their assignments come.

Thus we have computed positions[a].x and positions[a].dx for each a in A and so positions is complete. The user could now display the appointments on screen using the given positions array.

Algorithm Details

Building Columns

Building the columns is very straightforward, essentially we just try to keep pushing appointments to the foremost available column as follows,

ConstructColumns(A)
 1. SET columns = new List
 2. columns.Add(new List)
 3. columns[1].Add(A[1])
 4. FOR i = 1 TO A.Length
 5.     FOR j = 1 TO columns.Length
 6.         SET column = columns[j]
 7.         IF A[i].start >= column[column.Length].end
 8.             column[j].Add(A[i])
 9.             column = NULL
10.             BREAK
11.         ENDIF
12.     ENDFOR
13.     IF column != NULL
14.         columns.Add(new List)
15.         columns[columns.Length].Add(A[i])
16.     ENDIF
17. ENDFOR
18. RETURN columns

Building Alignments

Building Fill Space Directed Acyclic Graphs

After computing the columns (Building Columns) building the DAG isn't too difficult.

Building Time Respective Directed Acyclic Graphs

After computing the alignments (Building Alignments) building the DAGs is very straightforward.

BuildTimeRespectiveDAG(A, alignments)
 1. SET forward = new Dag(A.Length)
 2. SET backward = new Dag(A.Length)
 3. FOR i = 1 TO A.Length
 4.     FOR j = 1 TO A.Length
 5.         IF alignments.rFront[A[j]][1] === A[i]
 6.             backward.AddEdge(A[i], A[j])
 7.         ENDIF
 8.         IF alignments.rBack[A[j]][alignments.rBack[A[j].Length] === A[i]
 9.             forward.AddEdge(A[i], A[j])
10.        ENDIF
11.     ENDFOR
12. ENDFOR
13. RETURN (backwardDag, forwardDag)

Diagrams

We'll use the following set of appointments

Conclusions

More to come (namely specific implementation choices), you can examine the code (and/or example files) first though if you don't feel like waiting ;)