ca-bloom-filter
v1.0.1
Published
A lightweight, performant bloom filter implementation with a simple API
Downloads
276
Maintainers
Readme
ca-bloom-filter
A lightweight, performant bloom filter implementation with a simple API.
Installing
Via NPM: npm install ca-bloom-filter --save
.
Getting Started
After installing
import BloomFilter from 'ca-bloom-filter';
const bloomFilter = new BloomFilter(8, 1); // 8 bit filter using 1 hash.
Example Usage:
import BloomFilter from 'ca-bloom-filter';
const bloomFilter = new BloomFilter(8, 1);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
Condensed Documentation
Below is a condensed form of the documentation, each is a function that can be found on the BloomFilter object, called like so.
const bloom = new BloomFilter(42, 4);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
BloomFilter
Basic bloom filter implementation.
const bloom = new BloomFilter(42, 4);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
| Method | Parameters | Return |
| ----------- | -------- | ------ |
| .add(key) | key:String
| Returns BloomFilter
for chaining. |
| .contains(key) | key:String
| Returns true
if the item is within the filter, false
otherwise. |
| .equals(bloomFilter) | bloomFilter:BloomFilter
| Returns true
if the bloom filters are equal (same pattern of 1s and 0s), false
otherwise.|
| .falsePositiveRate() | None
| Returns Number
false positive rate 0.0 <= fpr <= 1.0. |
| .calculateBitIndices(key) | key:String
| Returns an array of indices {0 <= index < this.bits} which need to be set. |
SafeBloomFilter
Extends BloomFilter, implements a 'safe' version automatically sized to provide the desired false positive rate over the expected number of inserts. After the expected number of inserts has been passed, attempted inserts will throw errors.
const bloom = new SafeBloomFilter(10000, 0.05);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
| Method | Parameters | Return |
| ----------- | -------- | ------ |
| .estimateNumberBits(expectedInserts, falsePositiveRate) | expectedInserts:Number, falsePositiveRate:Number
| Returns Number
, number of bits this filter requires for safe operation. |
| .optimalNumHashFunctions(expectedInserts, bits) | expectedInserts:Number, bits:Number
| Returns Number
, number of Hash functions this filter requires. |
| .add(key) | key:String
| Returns BloomFilter
for chaining. |
Full Documentation
BloomFilter
const bloom = new BloomFilter(42, 4);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
add
bloomFilter.add(key)
Adds the given key to the filter and increments the number of inserts.
Parameters
- key -> An item to add to the filter.
Returns
Returns BloomFilter
for chaining.
Example
bloomFilter.add('cheese');
contains
bloomFilter.contains(key)
Tests whether the key is stored in the filter.
Parameters
- key -> The item to be tested for filter membership.
Returns
Returns true
if the item is within the filter, false
otherwise.
Example
bloomFilter.contains('cheese');
equals
bloomFilter.equals(bloomFilter)
Tests whether the key is stored in the filter.
Parameters
- bloomFilter -> A bloom filter instance.
Returns
Returns true
if the bloom filters are equal (same pattern of 1s and 0s), false
otherwise.
Example
bloomFilter.equals(otherBloom);
falsePositiveRate
bloomFilter.falsePositiveRate()
Provides an estimate for the false positive rate with the current inserted elements.
This will most likely be lower than the expected false positive rate when the filter
is not near the capacity but will trend towards 100% as it fills up.
probFalsePositive = (s / m) ^ k
s - Number of Bits Set.
m - Number of Bits in the Filter
k - Number of Hash Functions used.
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=903775 http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
Parameters
- None
Returns
Returns Number
false positive rate 0.0 <= fpr <= 1.0.
Example
bloomFilter.falsePositiveRate();
calculateBitIndices
bloomFilter.calculateBitIndices(key)
Calculate the indices at which we set the bits to 1 in the bit array. https://willwhim.wordpress.com/2011/09/03/producing-n-hash-functions-by-hashing-only-once/
Parameters
- key -> Item for which we calculate the bits to set.
Returns
Returns an array of indices {0 <= index < this.bits} which need to be set.
Example
bloomFilter.equals(otherBloom);
SafeBloomFilter
const bloom = new SafeBloomFilter(10000, 0.05);
bloom.contains('cheese'); // false
bloom.add('cheese');
bloom.contains('cheese'); // true
add-safe
bloomFilter.add(key)
Only adds an item to the filter if we are below the capacity of the filter, this avoids
increasing the actual error rate of the filter above the desired error rate. Throws an
error if there are more than expectedInserts
made to the filter.
Parameters
- key -> An item to add to the filter.
Returns
Returns BloomFilter
for chaining.
Example
bloomFilter.add('cheese');
estimateNumberBits
SafeBloomFilter.estimateNumberOfBits(expectedInserts, falsePositiveRate)
Estimates the number of bits required to store the given number of elements while maintaining the given false positive rate.
m = - (n Ln P / (Ln 2)^2)
https://en.wikipedia.org/wiki/Bloom_filter
https://stackoverflow.com/questions/658439/how-many-hash-functions-does-my-bloom-filter-need
Parameters
- expectedInserts -> Expected number of inserts that will be made.
- falsePositiveRate -> Desired maximum false positive rate.
Returns
Returns Number
, number of bits this filter requires for safe operation.
Example
SafeBloomFilter.estimateNumberBits(5000, 0.02);
optimalNumHashFunctions
SafeBloomFilter.optimalNumHashFunctions(expectedInserts, bits)
Calculates the optimal number of hash functions to minimise the false probability for the given m (size) and n (expectedInserts).
k = (m / n) * ln(2).
https://en.wikipedia.org/wiki/Bloom_filter
https://stackoverflow.com/questions/658439/how-many-hash-functions-does-my-bloom-filter-need
Parameters
- expectedInserts -> Expected number of inserts that will be made.
- bits -> Number of bits used in the filter.
Returns
Returns Number
, number of Hash functions this filter requires.
Example
SafeBloomFilter.optimalNumHashFunctions(5000, 250);
License
See LICENSE file.