npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

buckaroo

v0.7.12

Published

Fast Datagrid widget for the Jupyter Notebook and JupyterLab

Downloads

465

Readme

Buckaroo - The Data Table for Jupyter

Buckaroo is a modern data table for Jupyter that expedites the most common exploratory data analysis tasks. The most basic data analysis task - looking at the raw data, is cumbersome with the existing pandas tooling. Buckaroo starts with a modern performant data table that displays up to 10k rows, is sortable, has value formatting, and scrolls. On top of the core table experience extra features like summary stats, histograms, smart sampling, auto-cleaning, and a low code UI are added. All of the functionality has sensible defaults that can be overridden to customize the experience for your workflow.

Try it with Jupyterlite

Play with Buckaroo without any installation. Full Tour lite-badge

Quick start

run pip install buckaroo then restart your jupyter server

The following code shows Buckaroo on a simple dataframe

import pandas as pd
import buckaroo
pd.DataFrame({'a':[1, 2, 10, 30, 50, 60, 50], 'b': ['foo', 'foo', 'bar', pd.NA, pd.NA, pd.NA, pd. NA]})

When you run import buckaroo in a Jupyter notebook, Buckaroo becomes the default display method for Pandas and Polars DataFrames

Compatibility

Buckaroo works in the following notebook environments

  • jupyter lab (version >=3.6.0)
  • jupyter notebook (version >=7.0)
  • VS Code notebooks (with extra install)
  • Jupyter Lite
  • Google colab (with special initiation code, currently broken)

Buckaroo works with the following DataFrame libraries

  • pandas (version >=1.3.5)
  • polars optional
  • geopandas optional

Learn More

Buckaroo has extensive docs and tests, the best way to learn about the system is from feature example videos on youtube

Interactive Styling Gallery

The interactive styling gallery lets you see different styling configurations. You can live edit code and play with different configs.

Videos

Example Notebooks

The following examples are loaded into a jupyter lite environment with Buckaroo installed.

Features

High performance table

The core data grid of buckaroo is based on AG-Grid. This loads 1000s of cells in less than a second, with highly customizable display, formatting and scrolling. You no longer have to use df.head() to poke at portions of your data.

Fixed width formatting by default

By default numeric columns are formatted to use a fixed width font and commas are added. This allows quick visual confirmation of magnitudes in a column.

Histograms

Histograms for every column give you a very quick overview of the distribution of values, including uniques and N/A.

Summary stats

The summary stats view can be toggled by clicking on the 0 below the Σ icon. Summary stats are similar to df.describe and extensible.

Inteligent sampling

Buckaroo will display entire DataFrames up to 10k rows. Displaying more than that would run into performance problems that would make display too slow. When a DataFrame has more than 10k rows, Buckaroo samples a random set of 10k rows, and also adds in the rwos with the 5 most extreme values for each column.

Sorting

All of the data visible in the table (rows shown), is sortable by clicking on a column name, further clicks change sort direction then disable sort for that column. Because extreme values are included with sample rows, you can see outlier values too.

Extensibility at the core

Buckaroo summary stats are built on the Pluggable Analysis Framework that allows individual summary stats to be overridden, and new summary stats to be built in terms of existing summary stats. Care is taken to prevent errors in summary stats from preventing display of a dataframe.

Lowcode UI (beta)

Buckaroo has a simple low code UI with python code gen. This view can be toggled by clicking on the 0 below the λ icon.

Auto cleaning (beta)

Buckaroo can automatically clean dataframes to remove common data errors (a single string in a column of ints, recognizing date times...). This feature is in beta. You can access it by invoking buckaroo as BuckarooWidget(df, auto_clean=True)

Development installation

For a development installation:

git clone https://github.com/paddymul/buckaroo.git
cd buckaroo
#we need to build against 3.6.5, jupyterlab 4.0 has different JS typing that conflicts
# the installable still works in JL4
pip install build twine pytest sphinx polars mypy jupyterlab==3.6.5 pandas-stubs geopolars pyarrow
pip install -ve .

Enabling development install for Jupyter notebook:

Enabling development install for JupyterLab:

jupyter labextension develop . --overwrite

Note for developers: the --symlink argument on Linux or OS X allows one to modify the JavaScript code in-place. This feature is not available with Windows. `

Developing the JS side

There are a series of examples of the components in examples/ex.

Instructions

npm install
npm run dev

Contributions

We :heart: contributions.

Have you had a good experience with this project? Why not share some love and contribute code, or just let us know about any issues you had with it?

We welcome issue reports here; be sure to choose the proper issue template for your issue, so that we can be sure you're providing the necessary information.