bloomit
v2.0.1
Published
Space efficient bloom filter based on the bloom-filters npm package.
Downloads
1,548
Readme
bloomit
bloomit is a Space efficient bloom filter based on the bloom-filters npm package.
The main motivation for this package was to reduce the memory usage of the bloom filter by using a bitmap instead of an array of javascript numbers. This should result in a theoretical memory reduction by a factor of 64.
I have also edited the export to use a Uint8Array which encodes all needed values and can be used to send it over the web efficiently.
Methods
add(element: string) -> void
: add an element into the filter.has(element: string) -> boolean
: Test an element for membership, returning False if the element is definitively not in the filter and True is the element might be in the filter.equals(other: BloomFilter) -> boolean
: Test if two filters are equals.rate() -> number
: compute the filter's false positive rate (or error rate).export() -> Uint8Array
: export the filter as an Uint8Arrayinport(filterUint8Array: Uint8Array) -> BloomFilter
: Create a filter from a exporterd Uint8Array
const { BloomFilter } = require('bloomit');
// create a Bloom Filter with a size of 10 and 4 hash functions
let filter = new BloomFilter(10, 4);
// insert data
filter.add('paul');
filter.add('kolja');
filter.add('carl');
// lookup for some data
console.log(filter.has('paul')); // output: true
console.log(filter.has('xiaomei')); // output: false
// print the error rate
console.log(filter.rate());
// alternatively, create a bloom filter optimal for a number of items and a desired error rate
const items = ['paul', 'kolja', 'carl'];
const errorRate = 0.04; // 4 % error rate
filter = BloomFilter.create(items.length, errorRate);
// or create a bloom filter optimal for a collections of items and a desired error rate
filter = BloomFilter.from(items, errorRate);
// Export the filter
const exportedFilter = filter.export();
// Import the filter
filter = BloomFilter.import(exportedFilter);