npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

blakejs-fix

v0.0.1

Published

Pure Javascript implementation of the BLAKE2b and BLAKE2s hash functions

Downloads

1

Readme

blakejs

travis ci npm version

blakejs is a pure Javascript implementation of the BLAKE2b and BLAKE2s hash functions.

blake1


RFC 7693: The BLAKE Cryptographic Hash and MAC

BLAKE is the default family of hash functions in the venerable NaCl crypto library. Like SHA2 and SHA3 but unlike MD5 and SHA1, BLAKE offers solid security. With an optimized assembly implementation, BLAKE can be faster than all of those other hash functions.

Of course, this implementation is in Javascript, so it won't be winning any speed records. More under Performance below. It's short and sweet, less than 500 LOC.

As far as I know, this package is the easiest way to compute Blake2 in the browser.

Other options to consider:

  • @nazar-pc has WebAssembly implementation for higher performance where supported: blake2.wasm
  • @emilbayes has a Blake2b-only implementation with salt support; WASM with automatic JS fallback: blake2b
  • On node, you probably want the native wrapper node-blake2

Quick Start

$ npm install --save blakejs
var blake = require('blakejs')
console.log(blake.blake2bHex('abc'))
// prints ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d17d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923
console.log(blake.blake2sHex('abc'))
// prints 508c5e8c327c14e2e1a72ba34eeb452f37458b209ed63a294d999b4c86675982

API

1. Use blake2b to compute a BLAKE2b hash

Pass it a string, Buffer, or Uint8Array containing bytes to hash, and it will return a Uint8Array containing the hash.

// Computes the BLAKE2B hash of a string or byte array, and returns a Uint8Array
//
// Returns a n-byte Uint8Array
//
// Parameters:
// - input - the input bytes, as a string, Buffer, or Uint8Array
//           Strings are converted to UTF8 bytes
// - key - optional key Uint8Array, up to 64 bytes
// - outlen - optional output length in bytes, default 64
function blake2b(input, key, outlen) {
    [...]
}

For convenience, blake2bHex takes the same arguments and works the same way, but returns a hex string.

2. Use blake2b[Init,Update,Final] to compute a streaming hash

var KEY = null // optional key
var OUTPUT_LENGTH = 64 // bytes
var context = blake2bInit(OUTPUT_LENGTH, KEY)
...
// each time you get a byte array from the stream:
blake2bUpdate(context, bytes)
...
// finally, once the stream has been exhausted
var hash = blake2bFinal(context)
// returns a 64-byte hash, as a Uint8Array

3. All blake2b* functions have blake2s* equivalents

BLAKE2b: blake2b, blake2bHex, blake2bInit, blake2bUpdate, and blake2bFinal

BLAKE2s: blake2s, blake2sHex, blake2sInit, blake2sUpdate, and blake2sFinal

The inputs are identical except that maximum key size and maximum output size are 32 bytes instead of 64.

Limitations

  • Can only handle up to 2**53 bytes of input

    If your webapp is hashing more than 8 petabytes, you may have other problems :)

Testing

  • Examples from the RFC
  • BLAKE2s self-test from the RFC
  • Examples from http://pythonhosted.org/pyblake2/examples.html
  • A longer set of test vectors generated by https://github.com/jedisct1/crypto-test-vectors/tree/master/crypto/hash/blake2/blake2b/nosalt-nopersonalization/generators/libsodium

Performance

BLAKE2b: 15.2 MB / second on a 2.2GHz i7-4770HQ
BLAKE2s: 20.4 MB / second

¯\_(ツ)_/¯

If you're using BLAKE2b in server side node.js code, you probably want the native wrapper which should be able to do several hundred MB / second on the same processor.

If you're using BLAKE2b in a web app, 15 MB/sec might be fine.

Javascript doesn't have 64-bit integers, and BLAKE2b is a 64-bit integer algorithm. Writing it withUint32Array is not that fast. BLAKE2s is a 32-bit algorithm, so it's a bit faster.

If we want better machine code at the expense of gross-looking Javascript, we could use asm.js

License

Creative Commons CC0. Ported from the reference C implementation in RFC 7693.