bitset-bloom-filters
v0.1.3
Published
JS implementation of Bloom Filter using FastBitSet.js
Downloads
4
Maintainers
Readme
BitSet-Bloom-Filters
This is a fork of Callidon/bloom-filters using lemire/FastBitSet.js as a data structure. Original project uses plain JS arrays filled with numbers which could be quite heavy on memory.
JavaScript/TypeScript implementation of probabilistic data structures: Bloom Filter (and its derived), HyperLogLog, Count-Min Sketch, Top-K and MinHash. This package rely on non-cryptographic hash functions.
Keywords: bloom filter, cuckoo filter, KyperLogLog, MinHash, Top-K, probabilistic data-structures.
Table of contents
Installation
npm install bitset-bloom-filters --save
Supported platforms
- Node.js: v4.0.0 or higher
- Google Chrome: v41 or higher
- Mozilla Firefox: v34 or higher
- Microsoft Edge: v12 or higher
Data structures
Classic Bloom Filter
A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not.
Reference: Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7), 422-426. (Full text article)
Methods
add(element: string) -> void
: add an element into the filter.has(element: string) -> boolean
: Test an element for membership, returning False if the element is definitively not in the filter and True is the element might be in the filter.equals(other: BloomFilter) -> boolean
: Test if two filters are equals.rate() -> number
: compute the filter's false positive rate (or error rate).
const { BloomFilter } = require('bloom-filters')
// create a Bloom Filter with a size of 10 and 4 hash functions
let filter = new BloomFilter(10, 4)
// insert data
filter.add('alice')
filter.add('bob')
// lookup for some data
console.log(filter.has('bob')) // output: true
console.log(filter.has('daniel')) // output: false
// print the error rate
console.log(filter.rate())
// alternatively, create a bloom filter optimal for a number of items and a desired error rate
const items = ['alice', 'bob']
const errorRate = 0.04 // 4 % error rate
filter = BloomFilter.create(items.length, errorRate)
// or create a bloom filter optimal for a collections of items and a desired error rate
filter = BloomFilter.from(items, errorRate)
Every hash function is seeded
By default every hash function is seeded with an internal seed which is equal to 0x1234567890
. If you want to change it:
const { BloomFilter } = require('bloom-filter')
const bl = new BloomFilter(...)
console.log(bl.seed) // 78187493520
bl.seed = 0xABCD
console.log(bl.seed) // 43981
Documentation
See documentation online or generate it in directory doc/
with: npm run doc
Tests
Running with Mocha + Chai
# run tests
npm test
References
- Classic Bloom Filter: Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7), 422-426.
Changelog
| Version | Release date | Major changes |
|---|---|---|
| v0.1.0
| 08/05/2021 | Classic only implementation with FastBitSet |