npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

bigint-gcd

v1.0.46

Published

greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm

Downloads

551

Readme

bigint-gcd

Greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm. See https://en.wikipedia.org/wiki/Greatest_common_divisor#Lehmer's_GCD_algorithm. On my tests it is faster than Euclidean algorithm starting from 80-bit integers.

A version 1.0.2 also has something similar to "Subquadratic GCD" (see https://gmplib.org/manual/Subquadratic-GCD ), which is faster for large bigints (> 65000 bits), it should has better time complexity in case the multiplication is subquadratic, which is true in Chrome 93.

Installation

$ npm install bigint-gcd

Usage

import gcd from './node_modules/bigint-gcd/gcd.js';

console.log(gcd(120n, 18n));

There is also an implementation of the Extended Euclidean algorithm, which is useful to find the multiplicative modular inverse:

console.log(gcd.gcdext(3n, 5n)); // [2n, -1n, 1n]

And "Half GCD" which is useful to do the Rational reconstruction: It returns the transformation matrix and the transformed values after applying about half of the Euclidean steps.

console.log(gcd.halfgcd(1000000n, 1234567n)); // [-16n, 13n, 21n, -17n, 49371n, 12361n]

Performance:

The benchmark (see benchmark.html) resutls under Chrome 131:

| bit size | gcd | gmpy2 gcd | invmod | gmpy2 invert | | ------------------ | ------------------- | ------------------ | ------------------ | ------------------ | | 64 | 0.000270ms | 0.00030ms | 0.000310ms | 0.00066ms | | 128 | 0.001270ms | 0.00047ms | 0.001720ms | 0.00137ms | | 256 | 0.002660ms | 0.00153ms | 0.003650ms | 0.00224ms | | 512 | 0.005460ms | 0.00321ms | 0.007630ms | 0.00391ms | | 1024 | 0.012080ms | 0.00653ms | 0.018250ms | 0.00806ms | | 2048 | 0.031130ms | 0.01429ms | 0.048220ms | 0.01587ms | | 4096 | 0.067870ms | 0.02979ms | 0.137700ms | 0.03590ms | | 8192 | 0.174320ms | 0.06837ms | 0.341310ms | 0.09035ms | | 16384 | 0.503910ms | 0.17093ms | 0.867190ms | 0.24908ms | | 32768 | 1.677730ms | 0.49816ms | 2.281250ms | 0.75801ms | | 65536 | 4.406250ms | 1.43795ms | 6.152340ms | 1.94962ms | | 131072 | 11.828130ms | 3.98527ms | 16.937500ms | 4.98559ms | | 262144 | 32.296880ms | 10.52619ms | 47.203130ms | 14.05025ms | | 524288 | 86.625000ms | 28.16362ms | 123.500000ms | 38.94622ms | | 1048576 | 213.312500ms | 70.89262ms | 310.062500ms | 103.71075ms | | 2097152 | 519.250000ms | 177.16650ms | 773.875000ms | 269.43650ms | | 4194304 | 1255.750000ms | 433.85675ms | 1870.500000ms | 658.39875ms | | 8388608 | 2988.500000ms | 1069.74050ms | 4548.000000ms | 1673.88250ms |

Benchmark:

import {default as LehmersGCD} from './gcd.js';

function EuclideanGCD(a, b) {
  while (b !== 0n) {
    const r = a % b;
    a = b;
    b = r;
  }
  return a;
}

function ctz4(n) {
  return 31 - Math.clz32(n & -n);
}
const BigIntCache = new Array(32).fill(0n).map((x, i) => BigInt(i));
function ctz1(bigint) {
  return BigIntCache[ctz4(Number(BigInt.asUintN(32, bigint)))];
}
function BinaryGCD(a, b) {
  if (a === 0n) {
    return b;
  }
  if (b === 0n) {
    return a;
  }
  const k = ctz1(a | b);
  a >>= k;
  b >>= k;
  while (b !== 0n) {
    b >>= ctz1(b);
    if (a > b) {
      const t = b;
      b = a;
      a = t;
    }
    b -= a;
  }
  return k === 0n ? a : a << k;
}

function FibonacciNumber(n) {
  console.assert(n > 0);
  var a = 0n;
  var b = 1n;
  for (var i = 1; i < n; i += 1) {
    var c = a + b;
    a = b;
    b = c;
  }
  return b;
}

function RandomBigInt(size) {
  if (size <= 32) {
    return BigInt(Math.floor(Math.random() * 2**size));
  }
  const q = Math.floor(size / 2);
  return (RandomBigInt(size - q) << BigInt(q)) | RandomBigInt(q);
}

function test(a, b, f) {
  const g = EuclideanGCD(a, b);
  const count = 100000;
  console.time();
  for (let i = 0; i < count; i++) {
    const I = BigInt(i);
    if (f(a * I, b * I) !== g * I) {
      throw new Error();
    }
  }
  console.timeEnd();
}

const a1 = RandomBigInt(128);
const b1 = RandomBigInt(128);

test(a1, b1, LehmersGCD);
// default: 426.200927734375 ms
test(a1, b1, EuclideanGCD);
// default: 1136.77294921875 ms
test(a1, b1, BinaryGCD);
// default: 1456.793212890625 ms

const a = FibonacciNumber(186n);
const b = FibonacciNumber(186n - 1n);

test(a, b, LehmersGCD);
// default: 459.796875 ms
test(a, b, EuclideanGCD);
// default: 2565.871826171875 ms
test(a, b, BinaryGCD);
// default: 1478.333984375 ms