bayesian-js
v1.0.6
Published
Naive Bayes Machine Learning algorithms implemented on JS
Downloads
10
Maintainers
Readme
BayesianJS
Naive Bayes Machine Learning algorithms implemented on JS
USAGE
import { MultinomialNB, GaussianNB, BernoulliNB, NaiveBayes } from "bayesian-js";
...
...
//MultinomialNB
const model = new MultinomialNB();
model.fit([[2, 1, 0,0,0,0], [2,0,1,0,0,0], [1, 0,0, 1, 0, 0], [1, 0,0, 0,1,1]], ['yes', 'yes', 'yes', 'no']);
console.log(model.predict([[3,0,0,0,1,1]]))
});
...
//GaussianNB NB
const model = new GaussianNB();
model.fit([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]], [1, 1, 1, 2, 2, 2]);
console.log(model.predict([[-0.8, -1]]))
});
...
//BernoulliNB
const model = new BernoulliNB();
model.fit([[1, 1, 0,0,0,0], [1,0,1,0,0,0], [1, 0,0, 1, 0, 0], [1, 0,0, 0,1,1]], ['yes', 'yes', 'yes', 'no']);
console.log(model.predict([[1,0,1,0,1,1]]))
});
...
// Naive Bayes
test("NaiveBayes", () => {
const model = new NaiveBayes();
model.fit([[1, 1], [1, 2], [2, 2], [2, 3]], ['no', 'no', 'yes', 'yes']);
console.log(model.predict([[1, 3]]))
});
API
Table of Contents
loadModelFromImportedData
Parameters
data
Object Model Data
Returns Object Model Instance
License
MIT © Gleyder Hernandez