npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

azure-search-client

v3.1.5

Published

Client for Azure Search

Downloads

1,978

Readme

Azure Search Client

Build Status

npm install azure-search-client

Usage

Basic query (async/await)

Use the async/await pattern:

const { SearchService } = require('azure-search-client');

const client = new SearchService('myservice', 'mykey');
const resp = await client.indexes.use('myIndex').search({
  search: 'hello world',
});
console.log(resp.result.value); // array of result docs

Basic query (callback)

Or use the Node callback pattern:

client.indexes.use('myIndex').search({
  search: 'hello world',
}, (err, resp) => {
  if (err) { throw err; }
  console.log(resp.result.value); // array of result docs
});

Query API

Use the Azure Search POST query representation

If you are using TypeScript see how to use your own document models on index operations.

client.indexes.use('myIndex').search({
  count: true,
  facets: ['field1', 'field2'],
  filter: `field1 eq 123 and field2 ne 'foo'`,
  highlight: 'field1, field2',
  highlightPreTag: '<b>',
  highlightPostTag: '</b>',
  minimumCoverage: 90,
  orderby: 'field1 desc, field2',
  scoringProfile: 'myProfile',
  scoringParameters: [
    "currentLocation--122.123,44.77233",
    "lastLocation--121.499,44.2113"
  ],
  search: 'hello world',
  searchFields: 'field1, field2',
  searchMode: SearchMode.any,
  select: 'field1, field2',
  queryType: QueryType.simple,
  skip: 0,
  top: 10,
});

Query builders

Use QueryBuilder, QueryFilter, QueryFacet, and LambdaQueryFilter helpers to build a query using method chaining.

Build a simple query:

await client.indexes.use('myIndex')
  .buildQuery()
  .count(true)
  .search('some search query')
  .top(20)
  .executeQuery();

Build a query with facets:

await client.indexes.use('myIndex')
  .buildQuery()
  .buildFacet('myFacetField1', (f) => f.count(20).sortByValue('desc'))
  .buildFacet('myFacetField2', (f) => f.interval('day'))
  .executeQuery();

There are multiple ways to specify facets (combine them as needed):

await client.indexes.use('myIndex')
  .buildQuery()
  .facet('myFacetField1', 'myFacetField2') // simple facet parameters
  .buildFacet('myFacetField3', (f) => f.count(20).sortByValue('desc')) // callback builder
  .facet(new QueryFacet('myFacetField4').count(20)) // constructor builder
  .facetExpression('myFacetField5,count:5,interval:100', 'myFacetField6,count10') // raw expression strings
  .executeQuery();

Build an and filtered query:

await client.indexes.use('myIndex')
  .buildQuery()
  .filter((f) => f.eq('myField1', 123).ne('myField2', 'foo')) // by default, filters are chained with 'and' operator
  .executeQuery();

Build an or filtered query:

await client.indexes.use('myIndex')
  .buildQuery()
  .filterOr((f) => f.eq('myField1', 123).ne('myField1', 456)) // chain filters with the 'or' operator
  .executeQuery();

Build a not filtered query:

await client.indexes.use('myIndex')
  .buildQuery()
  .filterNot((f) => f.eq('myField1', 123).ne('myField1', 456)) // chain filters with the 'or' operator
  .executeQuery();

Filter on geoDistance:

await client.indexes.use('myIndex')
  .buildQuery()
  .filter((f) => f.geoDistance('myGeoField', [122, 80], GeoComparison.lt, 10)) // find documents less than 10km from the point at (122, 80)
  .executeQuery();

Filter on a string collection:

await client.indexes.use('myIndex')
  .buildQuery()
  .filter((f) => f.any('myField1', (x) => x.eq('foo'))) // find documents where any member of 'myField1' is 'foo'
  .executeQuery();

Build an arbitrarily complex filter graph:

await client.indexes.use('myIndex')
  .buildQuery()
  .filter(QueryFilter.and(
    QueryFilter.or(
      new QueryFilter().eq('field1', 123).eq('field2', 456),
      new QueryFilter().eq('field1', 999),
    ),
    new QueryFilter(Logical.not).eq('field3', 'foo'),
  ))
  .executeQuery();

Specify filter as a raw string expression

await client.indexes.use('myIndex')
  .buildQuery()
  .filter(`myField1 eq 123 and myField2/any(x: x eq 'foo')`)
  .executeQuery();

Escape user input when using Lucene query syntax.

await client.indexes.use('myIndex')
  .buildQuery()
  .queryType(QueryType.full)
  .search(QueryBuilder.escape('Find at&t documents')) // => "find at\&t documents"
  .executeQuery();

All of the query builders support TypeScript Generics.

Indexing API

azure-search-client automatically batches indexing operations up to 1000 documents or 16 MB, whichever is lower. Use either the fully buffered API (promise/callback based) or the streaming API, depending on your needs.

Fully buffered indexing API

Index documents using promise async/await

const docs = getDocuments(); // arbitrarily large array of document objects
const results = await client.indexes.use('myIndex')
  .index(docs);

Or using a callback

const docs = getDocuments(); // arbitrarily large array of document objects
client.indexes.use('myIndex')
  .index(docs, (err, results) => {
    if (err) { throw err; }
  });

Streaming indexing API

When it is impractical to fully buffer an indexing payload, consider using the streaming API to pipe document objects into the index as fast as they can be read (while still buffering batches up to the Azure Search payload limits). This technique works best with streaming object sources like csv-parse and json-stream.

The Node pipeline API was introduced in Node.js 10.x. For use on older versions, consider using the .pipe() API.

const { pipeline } = require('stream');
const csvParse = require('csv-parse'); // nmm i csv-parse

pipeline(
  createReadStream('./data.csv'),
  csvParse({ columns: ['key', 'title', 'body']}), // Must specify columns. If your csv contains a header row, skip it using 'from' csv option.
  search.indexes.use('myIndex').createIndexingStream(),
  (err) => {
    if (err) {
      console.error('Indexing failed');
    } else {
      console.log('Indexing complete');
    }
  }
)

Request Options

You can set optional request-specific options for any request:

client.indexes.use('myIndex').search({
  search: 'some search query',
}, {
  version: 'thisRequestApiVersion',
  key: 'thisRequestKey',
  retry: 3,
  timeout: 10000,
  clientRequestId: '{guid}',
  returnClientRequestId: true,
  ifMatch: 'someEtag',
  ifNoneMatch: 'someEtag',
});

You can set the default API version for your client:

const client = new SearchService('myService', 'myKey', 'myDefaultApiVersion');

JSON has no date representation, so Azure Search returns Date fields as strings. The search client will automatically parse any string value that looks like a date, but you can disable date parsing in the request options:

client.indexes.use('myIndex').search({
  search: 'hello world',
}, {
  parseDates: false,
});

Any object with a list() function accepts an optional $select option to limit the fields that are fetched:

client.indexes.list({ $select: ['name', 'fields'] });

Response properties

Every API response has some common properties (not every property is available for every request):

const resp = await client.indexes.use('myIndex').search({
  search: 'hello world',
});

// response body
resp.result;

// request id
resp.properties.requestId;

// time spent by the search engine
resp.properties.elapsedTime

// an identifier specified by the caller in the original request, if present
resp.properties.clientRequestId

// An opaque string representing the current version of a resource (returned for indexers, indexes, and data sources, but not documents). Use this string in the If-Match or If-None-Match header for optimistic concurrency control.
resp.properties.eTag

// The URL of the newly-created index definition for POST and PUT /indexes requests.
resp.properties.location

// HTTP status code of the current request
resp.statusCode

// Timestamp when the request started
resp.timer.start

// Node `hrtime` until the response headers arrived
resp.timer.response

// Node `hrtime` until the full response body was read
resp.timer.end

Manage search resources

With an admin key, the search client can manage the search resources

Manage Indexes

const indexes = client.indexes;

// CREATE INDEX
await indexes.create({
  /* IndexSchema */
});

// LIST INDEXES
await indexes.list();

Manage an index

const index = client.indexes.use('myIndex');

// ANALYZE TEXT
await index.analyze({
  /* AnalyzeQuery */
});

// COUNT DOCUMENTS
await index.count();

// DELETE THE INDEX
await index.delete();

// GET THE SCHEMA
await index.get();

// INDEX DOCUMENTS (add/update/delete)
await index.index([
  /* IndexDocument */
]);

// LOOKUP DOCUMENT
await index.lookup('myKey');

// SEARCH DOCUMENTS
await index.search({
  /* Query */
});

// GET INDEX STATS
await index.statistics();

// SUGGEST DOCUMENTS
await index.suggest({
  /* SuggestQuery */
});

Note: search, suggest, and lookup APIs will automatically parse document fields that look like Dates, returning JavaScript Date objects instead. To disable this, use the parseDate option


Manage Data Sources

const dataSources = client.dataSources;

// dataSources => .create, .list

Manage a Data Source

const dataSource = client.dataSources.use('myDataSource');

// dataSource => .get, .delete

Manage Indexers

const indexers = client.indexers;

// indexers => .create, .list

Manage an Indexer

const indexer = client.indexers.use('myIndexer');

// indexer => .get, .delete

// RESET INDEXER STATE
await indexer.reset();

// RUN THE INDEXER
await indexer.run();

// GET CURRENT INDEXER STATUS
await indexer.status();

Manage Synonym Maps

const synonymMaps = client.synonymMaps;

// synonymMaps => .create, .list

Manage a Synonym Map

const synonymMap = client.synonymMaps.use('mySynonymMap');

// synonymMap => .get, .delete

Manage Skill Sets

SkillSets are currently in preview, so be sure to use ApiVersion.preview in the SearchService constructor.

When referencing a skill type, input name, or output name, be sure to use the corresponding enum value rather than a plain string value.

const skillSets = client.skillSets;

// skillSets => .create, .list

Manage a Skill Set

const skillSet = client.skillSets.use('mySkillSet');

// skillSet => .get, .delete

TypeScript Generics

If you are using TypeScript, azure-search-client has full support for your custom document types

Strongly typed documents are optional and default to Document, which allows for arbitrary document fields.

import { SearchService } from 'azure-search-client';

interface MyDoc {
  id: string;
  num: number;
}

const resp = await client.indexes.use<MyDoc>('myIndex').search({
  search: 'hello',
});
const doc = resp.result.value[0];

doc is typed as MyDoc & SearchDocument, giving you compile-time access to id and num properties, as well as @search.score and @search.highlights.

Use your own Document types wherever documents are used: indexing, search, suggest.


When using a generic TDocument parameter on your SearchIndex, type safety also applies to the QueryBuilder, QueryFilter, and QueryFacet utilities.

import { QueryFacet, QueryBuilder, QueryFilter  } from 'azure-search-client';

interface MyDoc {
  id: string;
  num: number;
  date: Date;
  content: string;
}

const index = client.use<MyDoc>('myIndex');

const query = index.buildQuery() // or new QueryBuilder<MyDoc>()
    .searchFields('content') // ok
    .facet('num') // ok

    // compile errors since 'blah' and 'foo' are not part of the document model
    .buildFacet('blah', (facet) => facet.count(20))
    .select('id', 'foo')
    .highlight('foo')
    .orderbyAsc('foo');

const filter = query.buildFilter((filter) => filter // or new QueryFilter<MyDoc>()
  .eq('id', 'foo') // ok
  .lt('date', new Date()) // ok
  .eq('num', 'oops, a string'); // compile failure: string is not assignable to number field