@zkorum/keystore-idb
v0.18.1
Published
In-browser key management with IndexedDB and the Web Crypto API
Downloads
279
Readme
IndexedDB KeyStore
Forked from Fission keystore-idb with a breaking change that adds support for:
- multiple keypairs per key store
- copy keypair within a key store from a key name to another
Also added:
function keypairExists(keyName: string): Promise<boolean>
function createOverwriteIfAlreadyExists(writeKeyName: string, exchangeKeyName: string): Promise<KeyStore>
In-browser key management with IndexedDB and the Web Crypto API.
Securely store and use keys for encryption, decryption, and signatures. IndexedDB and Web Crypto keep keys safe from malicious javascript.
Supports both RSA (RSASSA-PKCS1-v1_5 & RSA-OAEP) and Elliptic Curves (P-256, P-381 & P-521).
ECC (Elliptic Curve Cryptography) is only available on Chrome. Firefox and Safari do not support ECC and must use RSA. Specifically, this is an issue with storing ECC keys in IndexedDB
Config
Below is the default config and all possible values Note: these are given as primitives, but in Typescript you can use the included enums
const defaultConfig = {
type: "ecc", // 'ecc' | 'rsa'
curve: "P-256", // 'P-256' | 'P-384' | 'P-521'
rsaSize: 2048, // 1024 | 2048 | 4096
symmAlg: "AES-CTR", // 'AES-CTR' | 'AES-GCM' | 'AES-CBC'
symmLen: 128, // 128 | 192 | 256
hashAlg: "SHA-256", // 'SHA-1' | 'SHA-256' | 'SHA-384' | 'SHA-512'
charSize: 16, // 8 | 16
storeName: "keystore", // any string
};
Note: if you don't include a crypto "type" ('ecc' | 'rsa'
), the library will check if your browser supports ECC. If so (Chrome), it will use ECC, if not (Firefox, Safari) it will fall back to RSA.
Example Usage
import keystore from "keystore-idb";
async function run() {
await keystore.clear();
const writeKeyName1 = "write-key-1";
const exchangeKeyName1 = "exchange-key-1";
const writeKeyName2 = "write-key-2";
const exchangeKeyName2 = "exchange-key-2";
const ks1 = await keystore.init({ storeName: "keystore" });
await ks1.createIfDoesNotExist(writeKeyName1, exchangeKeyName1);
await ks1.createIfDoesNotExist(writeKeyName2, exchangeKeyName2);
const msg = "Incididunt id ullamco et do.";
// exchange keys and write keys are separate because of the Web Crypto API
const exchangeKey1 = await ks1.publicExchangeKey(exchangeKeyName1);
const writeKey1 = await ks1.publicWriteKey(writeKeyName1);
const exchangeKey2 = await ks2.publicExchangeKey(exchangeKeyName2);
// these keys get exported as strings
console.log("exchangeKey1: ", exchangeKey1);
console.log("writeKey1: ", writeKey1);
console.log("exchangeKey2: ", exchangeKey2);
const sig = await ks1.sign(msg, writeKeyName1);
const valid = await ks1.verify(msg, sig, writeKey1);
console.log("sig: ", sig);
console.log("valid: ", valid);
const cipher = await ks1.encrypt(msg, exchangeKey2, exchangeKeyName1);
const decipher = await ks1.decrypt(cipher, exchangeKeyName2, exchangeKey1);
console.log("cipher: ", cipher);
console.log("decipher: ", decipher);
}
const newExchangeKeyName1 = "new-exchange-key-1";
const newWriteKeyName1 = "new-write-key-1";
await ks1.copyKeypair(exchangeKeyName1, newExchangeKeyName1);
await ks1.copyKeypair(writeKeyName1, newWriteKeyName1);
// The above two commands made writeKey1 and exchangeKey1 available from new keynames.
run();
Development
# install dependencies
yarn
# run development server
yarn start
# build
yarn build
# test
yarn test
# test w/ reloading
yarn test:watch
# publish (run this script instead of npm publish!)
./publish.sh