npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@zk-email/ether-email-auth-contracts-zksync

v0.0.2-preview

Published

```bash yarn install ```

Downloads

42

Readme

Set up

yarn install

Requirements

  • Newer than or equal to forge 0.2.0 (13497a5).

Build and Test

Make sure you have Foundry installed

Build the contracts using the below command.

$ yarn build

Run unit tests

$ yarn test

Run integration tests

Before running integration tests, you need to make a packages/contracts/test/build_integration directory, download the zip file from the following link, and place its unzipped directory under that directory. https://drive.google.com/file/d/1XDPFIL5YK8JzLGoTjmHLXO9zMDjSQcJH/view?usp=sharing

Then, move email_auth.zkey and email_auth.wasm in the unzipped directory params to build_integration.

Run each integration tests one by one as each test will consume lot of memory.

Eg: contracts % forge test --skip '*ZKSync*' --match-contract "IntegrationTest" -vvv --chain 8453 --ffi

Deploy Common Contracts.

You need to deploy common contracts, i.e., ECDSAOwnedDKIMRegistry, Verifier, and implementations of EmailAuth and SimpleWallet, only once before deploying each wallet.

  1. cp .env.sample .env.
  2. Write your private key in hex to the PRIVATE_KEY field in .env. If you want to verify your own contracts, you can set ETHERSCAN_API_KEY to your own key.
  3. source .env
  4. forge script script/DeployCommons.s.sol:Deploy --rpc-url $RPC_URL --chain-id $CHAIN_ID --etherscan-api-key $ETHERSCAN_API_KEY --broadcast --verify -vvvv

Deploy Each Wallet.

After deploying common contracts, you can deploy a proxy contract of SimpleWallet, which is an example contract supporting our email-based account recovery by RecoveryController.

  1. Check that the env values of DKIM, VERIFIER, EMAIL_AUTH_IMPL, and SIMPLE_WALLET_IMPL are the same as those output by the DeployCommons.s.sol script.
  2. forge script script/DeployRecoveryController.s.sol:Deploy --rpc-url $RPC_URL --chain-id $CHAIN_ID --broadcast -vvvv

Specification

There are four main contracts that developers should understand: IDKIMRegistry, Verifier, EmailAuth and EmailAccountRecovery. While the first three contracts are agnostic to usecases of our SDK, the last one is an abstract contract only for our email-based account recovery.

IDKIMRegistry Contract

It is an interface of the DKIM registry contract that traces public keys registered for each email domain in DNS. It is defined in the zk-email library. It requires a function isDKIMPublicKeyHashValid(string domainName, bytes32 publicKeyHash) view returns (bool): it returns true iff the given hash of the public key publicKeyHash is registered for the given email-domain name domainName.

One of its implementations is ECDSAOwnedDKIMRegistry. It stores the Ethereum address signer who can update the registry.

We also provide another implementation called ForwardDKIMRegistry. It stores an address of any internal DKIM registry and forwards its outputs. We can use it to upgrade a proxy of the ECDSAOwnedDKIMRegistry registry to a new DKIM registry with a different storage slots design by 1) upgrading its implementation into ForwardDKIMRegistry and 2) calling resetStorageForUpgradeFromECDSAOwnedDKIMRegistry function with an address of the internal DKIM registry.

Verifier Contract

It has a responsibility to verify a ZK proof for the email_auth.circom circuit. It is implemented in utils/Verifier.sol.

It defines a structure EmailProof consisting of the ZK proof and data of the instances necessary for proof verification as follows:

struct EmailProof {
    string domainName; // Domain name of the sender's email
    bytes32 publicKeyHash; // Hash of the DKIM public key used in email/proof
    uint timestamp; // Timestamp of the email
    string maskedSubject; // Masked subject of the email
    bytes32 emailNullifier; // Nullifier of the email to prevent its reuse.
    bytes32 accountSalt; // Create2 salt of the account
    bool isCodeExist; // Check if the account code is exist
    bytes proof; // ZK Proof of Email
}

Using that, it provides a function function verifyEmailProof(EmailProof memory proof) public view returns (bool): it takes as input the EmailProof proof and returns true iff the proof is valid. Notably, it internally calls Groth16Verifier.sol generated by snarkjs from the verifying key of the email_auth.circom circuit.

EmailAuth Contract

It is a contract deployed for each email user to verify an email-auth message from that user. The structure of the email-auth message is defined as follows:

struct EmailAuthMsg {
    uint templateId; // The ID of the subject template that the email subject should satisfy.
    bytes[] subjectParams; // The parameters in the email subject, which should be taken according to the specified subject template.
    uint skipedSubjectPrefix; // The number of skiiped bytes in the email subject.
    EmailProof proof; // The email proof containing the zk proof and other necessary information for the email verification by the verifier contract.
}

It has the following storage variables.

  • address owner: an address of the contract owner.
  • bytes32 accountSalt: an accountSalt used for the CREATE2 salt of this contract.
  • DKIMRegistry dkim: an instance of the DKIM registry contract.
  • Verifier verifier: an instance of the Verifier contract.
  • address controller: an address of a controller contract, defining the subject templates supported by this contract.
  • mapping(uint=>string[]) subjectTemplates: a mapping of the supported subject templates associated with its ID.
  • mapping(bytes32⇒bytes32) authedHash: a mapping of the hash of the authorized message associated with its emailNullifier.
  • uint lastTimestamp: the latest timestamp in the verified EmailAuthMsg.
  • mapping(bytes32=>bool) usedNullifiers: a mapping storing the used emailNullifier bytes.
  • bool timestampCheckEnabled: a boolean whether timestamp check is enabled or not.

It provides the following functions.

  • initialize(address _initialOwner, bytes32 _accountSalt, address _controller)
    1. Set owner=_initialOwner .
    2. Set accountSalt=_accountSalt.
    3. Set timestampCheckEnabled=true.
    4. Set controller=_controller.
  • dkimRegistryAddr() view returns (address) Return address(dkim)
  • verifierAddr() view returns (address) Return address(verifier) .
  • initDKIMRegistry(address _dkimRegistryAddr)
    1. Assert msg.sender==controller.
    2. Assert dkim is zero.
    3. Set dkim=IDKIMRegistry(_dkimRegistryAddr).
  • initVerifier(address _verifierAddr)
    1. Assert msg.sender==controller.
    2. Assert verifier is zero.
    3. Set verifier=Verifier(_verifierAddr).
  • updateDKIMRegistry(address _dkimRegistryAddr)
    1. Assert msg.sender==owner.
    2. Assert _dkimRegistryAddr is not zero.
    3. Set dkim=DKIMRegistry(_dkimRegistryAddr).
  • updateVerifier(address _verifier)
    1. Assert msg.sender==owner.
    2. Assert _verifier is not zero.
    3. Set verifier=Verifier(_verifier).
  • updateVerifier(address _verifierAddr)
    1. Assert msg.sender==owner .
    2. Assert _verifierAddr!=0.
    3. Update verifier to Verifier(_verifierAddr).
  • updateDKIMRegistry(address _dkimRegistryAddr)
    1. Assert msg.sender==owner .
    2. Assert _dkimRegistryAddr!=0.
    3. Update dkim to DKIMRegistry(_dkimRegistryAddr).
  • getSubjectTemplate(uint _templateId) public view returns (string[] memory)
    1. Assert that the template for _templateId exists, i.e., subjectTemplates[_templateId].length >0 holds.
    2. Return subjectTemplates[_templateId].
  • insertSubjectTemplate(uint _templateId, string[] _subjectTemplate)
    1. Assert _subjectTemplate.length>0 .
    2. Assert msg.sender==controller.
    3. Assert subjectTemplates[_templateId].length == 0, i.e., no template has not been registered with _templateId.
    4. Set subjectTemplates[_templateId]=_subjectTemplate.
  • updateSubjectTemplate(uint _templateId, string[] _subjectTemplate)
    1. Assert _subjectTemplate.length>0 .
    2. Assert msg.sender==controller.
    3. Assert subjectTemplates[_templateId].length != 0 , i.e., any template has been already registered with _templateId.
    4. Set subjectTemplates[_templateId]=_subjectTemplate.
  • deleteSubjectTemplate(uint _templateId)
    1. Assert msg.sender==controller.
    2. Assert subjectTemplates[_templateId].length > 0, i.e., any template has been already registered with _templateId.
    3. delete subjectTemplates[_templateId].
  • authEmail(EmailAuthMsg emailAuthMsg) returns (bytes32)
    1. Assert msg.sender==controller.
    2. Let string[] memory template = subjectTemplates[emailAuthMsg.templateId].
    3. Assert template.length > 0.
    4. Assert dkim.isDKIMPublicKeyHashValid(emailAuthMsg.proof.domain, emailAuthMsg.proof.publicKeyHash)==true.
    5. Assert usedNullifiers[emailAuthMsg.proof.emailNullifier]==false and set usedNullifiers[emailAuthMsg.proof.emailNullifier] to true.
    6. Assert accountSalt==emailAuthMsg.proof.accountSalt.
    7. If timestampCheckEnabled is true, assert that emailAuthMsg.proof.timestamp is zero OR lastTimestamp < emailAuthMsg.proof.timestamp, and update lastTimestamp to emailAuthMsg.proof.timestamp.
    8. Construct an expected subject expectedSubject from template and the values of emailAuthMsg.subjectParams.
    9. Assert that expectedSubject is equal to emailAuthMsg.proof.maskedSubject[skipedSubjectPrefix:] , i.e., the string of emailAuthMsg.proof.maskedSubject from the skipedSubjectPrefix-th byte.
    10. Assert verifier.verifyEmailProof(emailAuthMsg.proof)==true.
  • isValidSignature(bytes32 _hash, bytes memory _signature) public view returns (bytes4 magicValue)
    1. Parse _signature as (bytes32 emailNullifier).
    2. If authedHash[emailNullifier]== _hash, return 0x1626ba7e; otherwise return 0xffffffff.
  • setTimestampCheckEnabled(bool enabled) public
    1. Assert msg.sender==controller.
    2. Set timestampCheckEnabled to enabled.

EmailAccountRecovery Contract

It is an abstract contract for each smart account brand to implement the email-based account recovery. Each smart account provider only needs to implement the following functions in a new contract called controller. In the following, the templateIdx is different from templateId in the email-auth contract in the sense that the templateIdx is an incremental index defined for each of the subject templates in acceptanceSubjectTemplates() and recoverySubjectTemplates().

  • isActivated(address recoveredAccount) public view virtual returns (bool): it returns if the account to be recovered has already activated the controller (the contract implementing EmailAccountRecovery).
  • acceptanceSubjectTemplates() public view virtual returns (string[][]): it returns multiple subject templates for an email to accept becoming a guardian (acceptance email).
  • recoverySubjectTemplates() public view virtual returns (string[][]): it returns multiple subject templates for an email to confirm the account recovery (recovery email).
  • extractRecoveredAccountFromAcceptanceSubject(bytes[] memory subjectParams, uint templateIdx) public view virtual returns (address): it takes as input the parameters subjectParams and the index of the chosen subject template templateIdx in those for acceptance emails.
  • extractRecoveredAccountFromRecoverySubject(bytes[] memory subjectParams, uint templateIdx) public view virtual returns (address): it takes as input the parameters subjectParams and the index of the chosen subject template templateIdx in those for recovery emails.
  • acceptGuardian(address guardian, uint templateIdx, bytes[] subjectParams, bytes32 emailNullifier) internal virtual: it takes as input the Ethereum address guardian corresponding to the guardian's email address, the index templateIdx of the subject template in the output of acceptanceSubjectTemplates(), the parameter values of the variable parts subjectParams in the template acceptanceSubjectTemplates()[templateIdx], and an email nullifier emailNullifier. It is called after verifying the email-auth message to accept the role of the guardian; thus you can assume the arguments are already verified.
  • processRecovery(address guardian, uint templateIdx, bytes[] subjectParams, bytes32 emailNullifier) internal virtual: it takes as input the Ethereum address guardian corresponding to the guardian's email address, the index templateIdx of the subject template in the output of recoverySubjectTemplates(), the parameter values of the variable parts subjectParams in the template recoverySubjectTemplates()[templateIdx], and an email nullifier emailNullifier. It is called after verifying the email-auth message to confirm the recovery; thus you can assume the arguments are already verified.
  • completeRecovery(address account, bytes memory completeCalldata) external virtual: it can be called by anyone, in particular a Relayer, when completing the account recovery. It should first check if the condition for the recovery of account holds and then update its owner's address in the wallet contract.

It also provides the following entry functions with their default implementations, called by the Relayer.

  • handleAcceptance(EmailAuthMsg emailAuthMsg, uint templateIdx) external
    1. Extract an account address to be recovered recoveredAccount by calling extractRecoveredAccountFromAcceptanceSubject.
    2. Let address guardian = CREATE2(emailAuthMsg.proof.accountSalt, ERC1967Proxy.creationCode, emailAuthImplementation(), (emailAuthMsg.proof.accountSalt)).
    3. Let uint templateId = keccak256(EMAIL_ACCOUNT_RECOVERY_VERSION_ID, "ACCEPTANCE", templateIdx).
    4. Assert that templateId is equal to emailAuthMsg.templateId.
    5. Assert that emailAuthMsg.proof.isCodeExist is true.
    6. If the EmailAuth contract of guardian has not been deployed, deploy the proxy contract of emailAuthImplementation(). Its salt is emailAuthMsg.proof.accountSalt and its initialization parameter is recoveredAccount, emailAuthMsg.proof.accountSalt, and address(this), which is a controller of the deployed contract.
    7. If the EmailAuth contract of guardian has not been deployed, call EmailAuth(guardian).initDKIMRegistry(dkim()).
    8. If the EmailAuth contract of guardian has not been deployed, call EmailAuth(guardian).initVerifier(verifier()).
    9. If the EmailAuth contract of guardian has not been deployed, for each template in acceptanceSubjectTemplates() along with its index idx, call EmailAuth(guardian).insertSubjectTemplate(keccak256(EMAIL_ACCOUNT_RECOVERY_VERSION_ID, "ACCEPTANCE", idx), template).
    10. If the EmailAuth contract of guardian has not been deployed, for each template in recoverySubjectTemplates() along with its index idx, call EmailAuth(guardian).insertSubjectTemplate(keccak256(EMAIL_ACCOUNT_RECOVERY_VERSION_ID, "RECOVERY", idx), template).
    11. If the EmailAuth contract of guardian has been already deployed, assert that its controller is equal to address(this).
    12. Assert that EmailAuth(guardian).authEmail(1emailAuthMsg) returns no error.
    13. Call acceptGuardian(guardian, templateIdx, emailAuthMsg.subjectParams, emailAuthMsg.proof.emailNullifier).
  • handleRecovery(EmailAuthMsg emailAuthMsg, uint templateIdx) external
    1. Extract an account address to be recovered recoveredAccount by calling extractRecoveredAccountFromRecoverySubject.
    2. Let address guardian = CREATE2(emailAuthMsg.proof.accountSalt, ERC1967Proxy.creationCode, emailAuthImplementation(), (emailAuthMsg.proof.accountSalt)).
    3. Assert that the contract of guardian has been already deployed.
    4. Let uint templateId=keccak256(EMAIL_ACCOUNT_RECOVERY_VERSION_ID, "RECOVERY", templateIdx).
    5. Assert that templateId is equal to emailAuthMsg.templateId.
    6. Assert that EmailAuth(guardian).authEmail(emailAuthMsg) returns no error.
    7. Call processRecovery(guardian, templateIdx, emailAuthMsg.subjectParams, emailAuthMsg.proof.emailNullifier).

For zkSync

You should use foundry-zksync, the installation process is following URL. https://github.com/matter-labs/foundry-zksync

Current version foundry-zksync is forge 0.0.2 (6e1c282 2024-07-01T00:26:02.947919000Z)

Now foundry-zksync supports solc 0.8.26, but it won't be automatically downloaded by foundry-zksync. First you should compile our contracts with foundry, and then install foundry-zksync.

# Install foundry
foundryup

cd packages/contracts
yarn build

# Check if you have already had 0.8.26
ls -l /Users/{USER_NAME}/Library/Application\ Support/svm/0.8.26

# Install foundry-zksync
cd YOUR_FOUNDRY_ZKSYNC_DIR
chmod +x ./install-foundry-zksync
./install-foundry-zksync

# Install zksolc-bin 1.5.0 manually
# Download https://github.com/matter-labs/zksolc-bin/releases/tag/v1.5.0
chmod a+x {BINARY_NAME}
mv {BINARY_NAME} ~/.zksync/.

In addition, there are the problem with foundy-zksync. Currently they can't resolve contracts in monorepo's node_modules.

https://github.com/matter-labs/foundry-zksync/issues/411

To fix this, you should copy node_modules in the project root dir to packages/contracts/node_modules. And then you should replace libs = ["../../node_modules", "lib"] to libs = ["node_modules", "lib"] in foundry.toml. At the end, you should replace ../../node_modules to node_modules in remappings.txt.

Next, you should uncomment the following lines in foundry.toml.

# via-ir = true 

Partial comment-out files can be found the following. Please uncomment them. (Uncomment from FOR_ZKSYNC:START to FOR_ZKSYNC:END)

  • src/utils/ZKSyncCreate2Factory.sol
  • test/helpers/DeploymentHelper.sol

At the first forge build, you need to detect the missing libraries.

forge build --zksync --zk-detect-missing-libraries

As you saw before, you need to deploy missing libraries. You can deploy them by the following command for example.

$ forge build --zksync --zk-detect-missing-libraries
Missing libraries detected: src/libraries/CommandUtils.sol:CommandUtils, src/libraries/DecimalUtils.sol:DecimalUtils

Run the following command in order to deploy each missing library:

forge create src/libraries/DecimalUtils.sol:DecimalUtils --private-key {YOUR_PRIVATE_KEY} --rpc-url https://sepolia.era.zksync.dev --chain 300 --zksync
forge create src/libraries/CommandUtils.sol:CommandUtils --private-key {YOUR_PRIVATE_KEY} --rpc-url https://sepolia.era.zksync.dev --chain 300 --zksync --libraries src/libraries/DecimalUtils.sol:DecimalUtils:{DECIMAL_UTILS_DEPLOYED_ADDRESS}

After that, you can see the following line in foundry.toml. Also, this line is needed only for foundry-zksync, if you use foundry, please remove this line. Otherwise, the test will fail.

libraries = [
    "{PROJECT_DIR}/packages/contracts/src/libraries/DecimalUtils.sol:DecimalUtils:{DEPLOYED_ADDRESS}", 
    "{PROJECT_DIR}/packages/contracts/src/libraries/CommandUtils.sol:CommandUtils:{DEPLOYED_ADDRESS}"]

Incidentally, the above line already exists in foundy.toml with it commented out, if you uncomment it by replacing {PROJECT_DIR} with the appropriate path, it will also work.

About Create2, L2ContractHelper.computeCreate2Address should be used. And type(ERC1967Proxy).creationCode doesn't work correctly in zkSync. We need to hardcode the type(ERC1967Proxy).creationCode to bytecodeHash. Perhaps that is different value in each compiler version.

You should replace the following line to the correct hash. packages/contracts/src/EmailAccountRecovery.sol:L111

See, test/ComputeCreate2Address.t.sol

For zkSync testing

Run yarn zktest.

Current foundry-zksync overrides the foundry behavior. If you installed foundry-zksync, some EVM code will be different and some test cases will be failed. If you want to test on other EVM, please install foundry.

Even if the contract size is fine for EVM, it may exceed the bytecode size limit for zksync, and the test may not be executed. Therefore, EmailAccountRecovery.t.sol has been splited.

Currently some test cases are not work correctly because there is a issue about missing libraries.

https://github.com/matter-labs/foundry-zksync/issues/382

Failing test cases are here.

DKIMRegistryUpgrade.t.sol

  • testAuthEmail()

EmailAuth.t.sol

  • testAuthEmail()
  • testExpectRevertAuthEmailEmailNullifierAlreadyUsed()
  • testExpectRevertAuthEmailInvalidEmailProof()
  • testExpectRevertAuthEmailInvalidSubject()
  • testExpectRevertAuthEmailInvalidTimestamp()

EmailAuthWithUserOverrideableDkim.t.sol

  • testAuthEmail()

For integration testing

To pass the instegration testing, you should use era-test-node. See the following URL and install it. https://github.com/matter-labs/era-test-node

Run the era-test-node

era_test_node fork https://sepolia.era.zksync.dev

You remove .zksolc-libraries-cache directory, and run the following command.

forge build --zksync --zk-detect-missing-libraries

As you saw before, you need to deploy missing libraries. You can deploy them by the following command for example.

Missing libraries detected: src/libraries/CommandUtils.sol:CommandUtils, src/libraries/DecimalUtils.sol:DecimalUtils

Run the following command in order to deploy each missing library:

forge create src/libraries/DecimalUtils.sol:DecimalUtils --private-key {YOUR_PRIVATE_KEY} --rpc-url http://127.0.0.1:8011 --chain 260 --zksync
forge create src/libraries/CommandUtils.sol:CommandUtils --private-key {YOUR_PRIVATE_KEY} --rpc-url http://127.0.0.1:8011 --chain 260 --zksync --libraries src/libraries/DecimalUtils.sol:DecimalUtils:{DECIMAL_UTILS_DEPLOYED_ADDRESS}

Set the libraries in foundry.toml using the above deployed address.

Due to this change in the address of the missing libraries, the value of the proxyBytecodeHash must also be changed: change the value of the proxyBytecodeHash in E-mailAccountRecoveryZKSync.sol.

And then, run the integration testing.

forge test --match-contract "IntegrationZKSyncTest" --system-mode=true --zksync --gas-limit 1000000000 --chain 300 -vvv --ffi

For zkSync deployment (For test net)

You need to edit .env at first. Second just run the following commands with --zksync

source .env
forge script script/DeployRecoveryControllerZKSync.s.sol:Deploy --zksync --rpc-url $RPC_URL --broadcast --slow --via-ir --system-mode true -vvvv