npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@yoctol/analytics

v0.8.4

Published

Analytics for Yoctol bots

Downloads

80

Readme

yoctol-analytics

| Module | Description | | ---------------------- | -------------------------------------------------------------------------------------- | | yoctol-analytics | Yoctol's analytics module, which supports chatbot message and Facebook post analytics. | | yoctol-analytics-sdk | Analytics SDK for chatbot to track chat logs. |

Using this analytics module, you can get a analytics table like this.

Simple Guide

Install

$ npm install @yoctol/analytics
$ npm install @yoctol/analytics-sdk

Usage

First install sdk and log data into bot db using monk or knex client. Then analytics can generate corresponding files based on report setting.

  • sdk default mongo collection name: interactionLogs
  • sdk default knex table name: interaction_logs

Sample Report Setting

  • switchToHumanPayloads only supported in messenger platform.
reporterSettings: [
      {
        title: '總覽',
        className: 'Statistics',
        config: {
          switchToHumanPayloads: {
            postback: ['__SWITCH_TO_HUMAN__'],
            quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
          },
        },
      },
      {
        title: '互動次數(每日)',
        className: 'Histogram',
        config: {
          switchToHumanPayloads: {
            postback: ['__SWITCH_TO_HUMAN__'],
            quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
          },
          periodMinutes: 24 * 60,
        },
      },
      {
        title: '互動次數(每小時)',
        className: 'Histogram',
        config: {
          switchToHumanPayloads: {
            postback: ['__SWITCH_TO_HUMAN__'],
            quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
          },
          periodMinutes: 60,
        },
      },
      {
        title: '按鈕觸發次數',
        className: 'Postback',
        config: {},
      },
      {
        title: '訊息記錄',
        className: 'Log',
        config: {},
      },
    ],
}

SDK

const logger = new AnalyticsLogger({ knexClient, monkClient, logDbName });

logger.insertLog({ id, platform, platformChannelId, direction, event, triggers })

AnalyticsLogger Input

| Parameter | Description | | ------------------- | ------------------------------------------------------------------------------------------------------------------------- | | id | analytics request id | | platform | platform name, available values 'line', 'messenger', 'universal' | | platformChannelId | Bot binding channel (for LINE)/page id (for Facebook) | | direction | user message (incoming) or bot message (outgoing), available values: 'incoming', 'outgoing' | | event | raw event from the specified platform. | | triggers | trigger context from NLU triggers (including intent-entity model, regular expression and keywords), see here | | kuratorProjectId | optional (special case for Fubon) |

triggers

triggers: trigger | [trigger] // single object or array of objects

trigger: {
   intentId: "NLU INTENT ID",
   intentName: "NLU INTENT NAME",
   entityId: "NLU ENTITY ID",
   entityName: "NLU ENTITY NAME",
   entityValueId: "NLU ENTITY VALUE ID",
   entityValueName: "NLU ENTITY VALUE NAME",
   regexp: "^REGEXP$/g",
   keywords: ["KEYWORD1", "KEYWORD2", "KEYWORD3"],
   displayName: "ACTION NAME WHEN TRIGGERED BY PAYLOAD OR UNKNOWN",
   actionId: "ACTION ID WHEN TRIGGERED BY PAYLOAD OR UNKNOWN"
   isFallback: Boolean // unknown or not
}

Generic Message

Before the analytics pipeline, we use an adapter to transform platform format message to a generic format:

{
  id: STRING (uuid)
  direction: STRING ('incoming' | 'outgoing')
  type: STRING ('text' | 'quick_reply' | 'button' | ...)
  platform: STRING ('messenger' | 'line' | 'universal' | ...)
  text: STRING
  postback: STRING
  context: {
      trigger: JSON
      ... extendibleFields
  },
  raw: JSON
  ... extendibleFields
}

Architecture

We arrange analytics module for yoctol chatbot in a pipeline structure:

Raw message logs from database (MongoDb/MSSQL) passes through the whole component and aggregates to analytics tables (in .xlsx/.csv/.json format)

Streamed Processing

For memory saving issue, this analytics module partially fetch messages from databases, and then aggregate each chunk into the final result table(s).

I18n

I18n tables are in src/locale/{bot, analytics}/{en, zh}.json.

Use functions in src/i18n.js to implement i18n in tables:

  • setLocale(locale): set locale to be 'zh' or 'en'
  • translate(key, params, namespace = 'analytics'): use the template of key from namespace to generate a i18n string with parameters params

e.g.

import { setLocale, translate as t } from '../i18n';

setLocale('zh');

const intentName = '表示開心';

const title = t('title_entities_of_intent', {
  intentName,
});

console.log(title);

// output: 表示開心 的抽換詞類統計

Settings

Initialization

new Analytics({ ... options });

Parameters

| Parameter | Description | | ----------------- | ------------------------------------------------------------------------- | | kuratorProjectId | kurator project id for filtering specific project. | | platformChannelId | LINE channel id or messenger recipient id for filtering specific channel. | | mongoUrl | URL of mongoDB. | | mongoClient | mongoDB client compatible with native basic APIs, in here we use monk. | | knexClient | knex client for Relational DBs, we have only tested MSSQL. | | collectionNames | collection/table names of DB for analytics. See here | | platform | messaging platform. Now support: ‘line‘, ‘messenger‘, 'generic' | | startDate | starting date | | endDate | ending date | | analyzerSettings | settings for analyzers, see here. | | reporterSettings | settings for reporters, see here. | | locale | Specify locale for analytics. Now support: en, zh | | customAdapter | Adapter for generic message analytics. | | stream | stream processing mode (boolean) | | chunkSize | chunk size for stream, enabled only when stream is true | | definition | kurator definition for retrieving action names. |

collectionNames

default:

{
  logsName: 'interactionLogs',
  sessionsName: 'sessions',
}

analyzerSettings

e.g.

{
  filteredUserIds: [],
  conversationSplitMinutes: 15,
}

reporterSettings

e.g.

[
  {
    title: 'title_overview',
      className: 'Statistics',
        config: {
        switchToHumanPayloads: {
          postback: ['__SWITCH_TO_HUMAN__'],
          quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
        },
      },
    },
]

Components from Analytics Architecture

Adapter

An adapter transforms raw chatbots log into generic message format for later processing.

Analyzer

An analyzer is a auxiliary data processor for reporters. It consumes message logs and produces specific type of structured data.

The following are structures of each analyzer's output data.

IntentAnalyzer

  Output: Map of Intent

  Intent: {
    id: Number,
    count: Number,
    entities: Map of Entity,
  }

  Entity: {
    id: Number,
    count: Number,
    entityValues: Map of EntityValues,
  }

  EntityValue: {
    id: Number,
    count: Number,
  }

e.g.

{
  'intentName1': {
    id: 1,
    count: 123,
    entities: {
      'entityName1': {
        id: 1,
        count: 34,
        entityValues: {
          'entityValueName1': {
            id: 1,
            count: 16
          },
          'entityValueName2': {
            id: 2,
            count: 12
          },
        },
      },
      'entityName2': {
        id: 2,
        count: 47,
        entityValues: {}
      }
    }
  },
  'intentName2': {
    id: 2,
    count: 456,
    entities: {},
  },
}

UserAnalyzer

UserAnalyzer produces a list of user ids.

Output: List of Strings

UserConversationAnalyzer

UserConversationAnalyzer produces logs grouped by conversations, and conversations grouped by users.

Output: List of UserConversation

UserConversation: {
  id: String,
  conversations: List of Conversation,
  conversationtCount: Number,
}

Conversation: List of ProcessedLog // logs processed by adapaters

e.g.

[
  {
    id: 'userId1',
    conversations: [
      [ {...rawLog1 }, { ...rawLog2 }, { ...rawLog3 }],
      [ {...rawLog4 }, { ...rawLog5 }, { ...rawLog6 }],
    ],
    conversationsCount: 2,
  },
  ...
]

Reporter

A reporter aggregates structured data tables

Here's the list of all reporters and their brief descriptions

ActionReporter / PostbackReporter / QuickReplyReporter / ReferralReporter

These 4 reporters simply give (field value, count) pairs for specific field in chat logs.

HistogramReporter

HistogramReporter is to produce statistics based on time duration (daily, hourly)

example config:

{
    switchToHumanPayloads: {
      postback: ['__SWITCH_TO_HUMAN__'],
      quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
    },
    periodMinutes: 24 * 60,
  }

IntentReporter / IntentEntityReporter

These 2 reporters produces intent stats and entity stats for each intents.

UnknownReporter

Unknown reporter shows all messages with unknown intent.

LogReporter

LogReporter produces raw logs

StatisticsReporter

StatisticsReporter produces the general statistics table.

example config:

    switchToHumanPayloads: {
      postback: ['__SWITCH_TO_HUMAN__'],
      quick_reply: ['__SWITCH_TO_HUMAN__', '__INTENT_轉接專人__'],
    },
  }

Writer

A writer writes JSON produces by reporters into files. Currently there are 3 Writers for different formats:

ExcelWriter

CsvWriter

JsonWriter