npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@wladyslaw-malejew/nuxt-chatgpt

v0.2.3

Published

ChatGPT integration for Nuxt 3

Downloads

1,492

Readme

ChatGPT integration for Nuxt 3.

npm version npm downloads License

About the module

This user-friendly module boasts of an easy integration process that enables seamless implementation into any Nuxt 3 project. With type-safe integration, you can integrate ChatGPT into your Nuxt 3 project without breaking a sweat. Enjoy easy access to the chat, and chatCompletion methods through the useChatgpt() composable. Additionally, the module guarantees security as requests are routed through a Nitro Server, thus preventing the exposure of your API Key. The module use openai library version 4.0.0 behind the scene.

Features

  • 💪   Easy implementation into any Nuxt 3 project.
  • 👉   Type-safe integration of Chatgpt into your Nuxt 3 project.
  • 🕹️   Provides a useChatgpt() composable that grants easy access to the chat, and chatCompletion methods.
  • 🔥   Ensures security by routing requests through a Nitro Server, preventing the API Key from being exposed.
  • 🧱   It is lightweight and performs well.

Getting Started

  1. Add nuxt-chatgpt dependency to your project
  • npm
    npm install --save-dev nuxt-chatgpt
  • pnpm
    pnpm add -D nuxt-chatgpt
  • yarn
    yarn add --dev nuxt-chatgpt
  1. Add nuxt-chatgpt to the modules section of nuxt.config.ts
export default defineNuxtConfig({
  modules: ["nuxt-chatgpt"],

  // entirely optional
  chatgpt: {
    apiKey: 'Your apiKey here goes here'
  },
})

That's it! You can now use Nuxt Chatgpt in your Nuxt app 🔥

Usage & Examples

To access the chat, and chatCompletion methods in the nuxt-chatgpt module, you can use the useChatgpt() composable, which provides easy access to them. The chat, and chatCompletion methods requires three parameters:

| Name | Type | Default | Description | |--|--|--|--| |message|String|available only for chat()|A string representing the text message that you want to send to the GPT model for processing. |messages|Array|available only for chatCompletion()|An array of objects that contains role and content |model|String|text-davinci-003 for chat() and gpt-3.5-turbo for chatCompletion()|Represent certain model for different types of natural language processing tasks. |options|Object|{ temperature: 0.5, max_tokens: 2048, top_p: 1 frequency_penalty: 0, presence_penalty: 0 }|An optional object that specifies any additional options you want to pass to the API request, such as the number of responses to generate, and the maximum length of each response.

Available models:

  • text-davinci-002
  • text-davinci-003
  • gpt-3.5-turbo
  • gpt-3.5-turbo-0301
  • gpt-3.5-turbo-1106
  • gpt-4
  • gpt-4-1106-preview
  • gpt-4-0314
  • gpt-4-0613
  • gpt-4-32k
  • gpt-4-32k-0314
  • gpt-4-32k-0613

You need to join waitlist to use gpt-4 models within chatCompletion method

Simple chat usage

In the following example, the model is unspecified, and the text-davinci-003 model will be used by default.

const { chat } = useChatgpt()

const data = ref('')
const inputData = ref('')

async function sendMessage() {
  try {
    const response = await chat(inputData.value)
    data.value = response
  } catch(error) {
    alert(`Join the waiting list if you want to use GPT-4 models: ${error}`)
  }
}
<template>
  <div>
    <input v-model="inputData">
    <button
      @click="sendMessage"
      v-text="'Send'"
    />
    <div>{{ data }}</div>
  </div>
</template>

Usage of chat with different model

const { chat } = useChatgpt()

const data = ref('')
const inputData = ref('')

async function sendMessage() {
  try {
    const response = await chat(inputData.value, 'gpt-3.5-turbo')
    data.value = response
  } catch(error) {
    alert(`Join the waiting list if you want to use GPT-4 models: ${error}`)
  }
}
<template>
  <div>
    <input v-model="inputData">
    <button
      @click="sendMessage"
      v-text="'Send'"
    />
    <div>{{ data }}</div>
  </div>
</template>

Simple chatCompletion usage

In the following example, the model is unspecified, and the gpt-3.5-turbo model will be used by default.

const { chatCompletion } = useChatgpt()

const chatTree = ref([])
const inputData = ref('')

async function sendMessage() {
  try {
    const message = {
      role: 'user',
      content: `${inputData.value}`,
    }

    chatTree.value.push(message)

    const response = await chatCompletion(chatTree.value)
    
    const responseMessage = {
      role: response[0].message.role,
      content: response[0].message.content
    }
    
    chatTree.value.push(responseMessage)
  } catch(error) {
    alert(`Join the waiting list if you want to use GPT-4 models: ${error}`)
  }
}
<template>
  <div>
    <input v-model="inputData">
    <button
      @click="sendMessage"
      v-text="'Send'"
    />
    <div>
      <div
        v-for="chat in chatTree"
        :key="chat"
      >
        <strong>{{ chat.role }} :</strong>
        <div>{{ chat.content }} </div>
      </div>
    </div>
  </div>
</template>

Usage of chatCompletion with different model

const { chatCompletion } = useChatgpt()

const chatTree = ref([])
const inputData = ref('')

async function sendMessage() {
  try {
    const message = {
      role: 'user',
      content: `${inputData.value}`,
    }

    chatTree.value.push(message)

    const response = await chatCompletion(chatTree.value, 'gpt-3.5-turbo-0301')
    
    const responseMessage = {
      role: response[0].message.role,
      content: response[0].message.content
    }
    
    chatTree.value.push(responseMessage)
  } catch(error) {
    alert(`Join the waiting list if you want to use GPT-4 models: ${error}`)
  }
}
<template>
  <div>
    <input v-model="inputData">
    <button
      @click="sendMessage"
      v-text="'Send'"
    />
    <div>
      <div
        v-for="chat in chatTree"
        :key="chat"
      >
        <strong>{{ chat.role }} :</strong>
        <div>{{ chat.content }} </div>
      </div>
    </div>
  </div>
</template>

chat vs chatCompletion

The chat method allows the user to send a prompt to the OpenAI API and receive a response. You can use this endpoint to build conversational interfaces that can interact with users in a natural way. For example, you could use the chat method to build a chatbot that can answer customer service questions or provide information about a product or service.

The chatCompletion method is similar to the chat method, but it provides additional functionality for generating longer, more complex responses. Specifically, the chatCompletion method allows you to provide a conversation history as input, which the API can use to generate a response that is consistent with the context of the conversation. This makes it possible to build chatbots that can engage in longer, more natural conversations with users.

Module Options

| Name | Type | Default | Description | |--|--|--|--| |apiKey|String|xxxxxx|Your apiKey here goes here |isEnabled|Boolean|true| Enable or disable the module. True by default.

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE.txt for more information.

Contact

Oliver Trajceski - LinkedIn - [email protected]

Project Link: https://vuemadness.com/vuehub/nuxt-chatgpt/

Development

# Install dependencies
npm install

# Generate type stubs
npm run dev:prepare

# Develop with the playground
npm run dev

# Build the playground
npm run dev:build

# Run ESLint
npm run lint

# Run Vitest
npm run test
npm run test:watch

# Release new version
npm run release

Acknowledgments

Use this space to list resources you find helpful and would like to give credit to. I've included a few of my favorites to kick things off!