npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@web3-kms-signer/core

v1.0.16

Published

The Web3 KMS Signer Library provides an efficient way to sign Ethereum transactions and messages using private keys managed by Key Management Services (KMS) like AWS and GCP, as well as supporting Hierarchical Deterministic (HD) wallets. It simplifies the

Downloads

7,088

Readme

Web3 KMS Signer Library

The Web3 KMS Signer Library provides an efficient way to sign Ethereum transactions and messages using private keys managed by Key Management Services (KMS) like AWS and GCP, as well as supporting Hierarchical Deterministic (HD) wallets. It simplifies the complexities associated with transaction serialization and signature generation, facilitating the creation of secure and blockchain-compliant transactions.

Refer to this article for a more in-depth understanding : https://jonathanokz.medium.com/secure-an-ethereum-wallet-with-a-kms-provider-2914bd1e4341

Features

  • Sign Ethereum transactions and arbitrary messages.
  • Support for KMS wallets (AWS KMS, GCP KMS) and HD wallets.
  • Network-specific transaction signing for compatibility across different networks (support EIP-155 signatures).

Installation

Install the core library and any necessary extensions based on your wallet choice:

npm install @web3-kms-signer/core

For hd wallets :

npm install @web3-kms-signer/hd-wallets

For kms wallets :

npm install @web3-kms-signer/kms-wallets
npm install @web3-kms-signer/kms-provider-aws
npm install @web3-kms-signer/kms-provider-gcp

Usage Overview

  1. Initialize Wallets: Choose between HDWallets or KMSWallets.
  2. Set Up Signer: Utilize the Wallets instance to initialize.
  3. Perform Signing: Sign transactions or messages as needed.

1. Initialize Wallets:

Choose a wallet type based on your requirements, such as KMS-based wallets (KMSWallets) or Hierarchical Deterministic (HDWallets).

HD wallets

Initialization

import { HDWallets } from "@web3-kms-signer/hd-wallets";

const mnemonic = "situate prefer amazing differ lift slogan omit kind problem word repair cousin";
const wallets = new HDWallets(mnemonic);

keyId

To sign your transactions, you will need to generate a keyId for each identity. Here's how you can do it:

// With HD Wallets, the `keyId` is the derivation path, which specifies the route through which individual keys are generated from the master seed.
const keyId = "0'/0/1"

// A tool is available for generating derivation path easier.
// Please see various use cases below :
const keyId = UBIP44.keyId("4-67"); // => "4'/0/67"
const keyId = UBIP44.keyId("67"); // => "0'/0/67"
const keyId = UBIP44.keyId({account: 4, index: 67}); // => "4'/0/67"
const keyId = UBIP44.keyId({index: 67}); // => "0'/0/67"

KMS wallets

Initialization

import { KMSWallets } from "@web3-kms-signer/kms-wallets";

const provider = // KMS provider initialization
const wallets = new KMSWallets(provider);

KMS provider

Using AWS KMS

npm install @web3-kms-signer/kms-provider-aws
import { KMSProviderAWS } from "@web3-kms-signer/kms-provider-aws";

const awsConfig = {
    region: 'us-east-1',
    credentials: {
        accessKeyId: 'YOUR_AWS_ACCESS_KEY_ID',
        secretAccessKey: 'YOUR_AWS_SECRET_ACCESS_KEY'
    }
};

const provider = new KMSProviderAWS(awsConfig);

AWS KMS keyId

// If you haven't yet generated keys in AWS KMS, follow this step to create a new asymmetric signing key with the appropriate configurations.
const keyId = await provider.createKey();

Using GCP KMS

npm install @web3-kms-signer/kms-provider-gcp
import { KMSProviderGCP } from "@web3-kms-signer/kms-provider-gcp";

const gcpConfig = {
    keyFilename: "path/to/your/gcp/keyfile.json"
};
const provider = new KMSProviderGCP(gcpConfig);

// If you haven't yet generated key-ring in GCP KMS, follow this step :
// This step is required only once before beginning; afterwards, you'll just need the `key-ring-id`.
const keyRingId = await provider.createKeyRing("key-ring-id");

provider.setPath({
        projectId: "your-gcp-project-id",
        locationId: "your-gcp-location-id",
        keyRingId: keyRingId
    });

GCP KMS keyId

// If you haven't yet generated keys in GCP KMS, follow this step to create a new asymmetric signing key with the appropriate configurations.
const keyId = await provider.createKey();

// You can choose between 'HSM' and 'SOFTWARE' (default is 'SOFTWARE')
// HSM offer stronger security than software solutions, but are more expensive. The choice depends on your security needs and budget.
const keyId = await provider.createKey('HSM');
const keyId = await provider.createKey('SOFTWARE');

2. Set Up Signer:

import { Signer } from "@web3-kms-signer/core";

const chainId = 3; // The `chainId` is optional, only useful for signing transactions on EIP-155. (will not be considered when signing messages).
const signer = new Signer(wallets, chainId);

3. Perform Signing:

Signing Transactions

const txData = {
    nonce: '0x00', // Replace with actual nonce
    gasPrice: '0x09184e72a000', // Replace with actual gas price
    gasLimit: '0x2710', // Replace with actual gas limit
    to: '0x0000000000000000000000000000000000000000', // Replace with recipient address
    value: '0x00', // Amount to send
    data: '0x0', // Data payload if any
};

const signedTx = await signer.signTransaction({ keyId: 'keyId' }, txData);

Signing Messages

const message = "hello world !";
const signedMessage = await signer.signMessage({ keyId: 'keyId' }, message);

Complete implementation to sign and send transactions on Blockchain

HD implementation

import { Signer } from "@web3-kms-signer/core";
import { HDWallets } from "@web3-kms-signer/hd-wallets";
import  web3  from  "web3";

const chainId = 3; // Ropsten
const mnemonic = "relief material pool snap swing alien fiction total october mesh eyebrow idea";
const signer = new Signer(new HDWallets(mnemonic), chainId);

const txData = {
    nonce: '0x00', // Replace with actual nonce
    gasPrice: '0x09184e72a000', // Replace with actual gas price
    gasLimit: '0x2710', // Replace with actual gas limit
    to: '0x0000000000000000000000000000000000000000', // Replace with recipient address
    value: '0x00', // Amount to send
    data: '0x0', // Data payload if any
};

const signedTx = await signer.signTransaction({ keyId: 'keyId' }, txData);

web3.eth.sendSignedTransaction(signedTx)
.on('confirmation', (confirmationNumber : number, receipt : any) => {
	console.log("confirmation: " + confirmationNumber);
}).on('receipt', (txReceipt : any) => {
	console.log("signAndSendTx txReceipt. Tx Address: " + txReceipt.transactionHash);
}).on('error', error  => {
	console.error("error: " + error);
});

KMS implementation

Using AWS KMS

import { Signer } from "@web3-kms-signer/core";
import { KMSWallets } from "@web3-kms-signer/kms-wallets";
import { KMSProviderAWS } from "@web3-kms-signer/kms-provider-aws";
import  web3  from  "web3";

const awsConfig = {
    region: 'us-east-1',
    credentials: {
        accessKeyId: 'YOUR_AWS_ACCESS_KEY_ID',
        secretAccessKey: 'YOUR_AWS_SECRET_ACCESS_KEY'
    }
};
const provider = new KMSProviderAWS(awsConfig);

const chainId = 3; // Ropsten
const signer = new Signer(new KMSWallets(provider), chainId);

const txData = {
    nonce: '0x00', // Replace with actual nonce
    gasPrice: '0x09184e72a000', // Replace with actual gas price
    gasLimit: '0x2710', // Replace with actual gas limit
    to: '0x0000000000000000000000000000000000000000', // Replace with recipient address
    value: '0x00', // Amount to send
    data: '0x0', // Data payload if any
};

const signedTx = await signer.signTransaction({ keyId: 'keyId' }, txData);

web3.eth.sendSignedTransaction(signedTx)
.on('confirmation', (confirmationNumber : number, receipt : any) => {
	console.log("confirmation: " + confirmationNumber);
}).on('receipt', (txReceipt : any) => {
	console.log("signAndSendTx txReceipt. Tx Address: " + txReceipt.transactionHash);
}).on('error', error  => {
	console.error("error: " + error);
});

Using GCP KMS

import { Signer } from "@web3-kms-signer/core";
import { KMSWallets } from "@web3-kms-signer/kms-wallets";
import { KMSProviderGCP } from "@web3-kms-signer/kms-provider-gcp";
import  web3  from  "web3";

const gcpConfig = {
    keyFilename: 'path/to/your/gcp/keyfile.json'
};
const provider = new KMSProviderGCP(gcpConfig);
provider.setPath({
        projectId: 'your-gcp-project-id',
        locationId: 'your-gcp-location-id',
        keyRingId: 'key-ring-id' // defined before
    });

const chainId = 3; // Ropsten
const signer = new Signer(new KMSWallets(provider), chainId);

const txData = {
    nonce: '0x00', // Replace with actual nonce
    gasPrice: '0x09184e72a000', // Replace with actual gas price
    gasLimit: '0x2710', // Replace with actual gas limit
    to: '0x0000000000000000000000000000000000000000', // Replace with recipient address
    value: '0x00', // Amount to send
    data: '0x0', // Data payload if any
};

const signedTx = await signer.signTransaction({ keyId: 'keyId' }, txData);

web3.eth.sendSignedTransaction(signedTx)
.on('confirmation', (confirmationNumber : number, receipt : any) => {
	console.log("confirmation: " + confirmationNumber);
}).on('receipt', (txReceipt : any) => {
	console.log("signAndSendTx txReceipt. Tx Address: " + txReceipt.transactionHash);
}).on('error', error  => {
	console.error("error: " + error);
});

Complete implementation to sign a message

HD implementation

import { Signer } from "@web3-kms-signer/core";
import { HDWallets } from "@web3-kms-signer/hd-wallets";

const mnemonic = "relief material pool snap swing alien fiction total october mesh eyebrow idea";
const signer = new Signer(new HDWallets(mnemonic));
const signedMessage = await signer.signMessage({ keyId: 'keyId' }, "my message");

KMS implementation

Using AWS KMS

import { Signer } from "@web3-kms-signer/core";
import { KMSWallets } from "@web3-kms-signer/kms-wallets";
import { KMSProviderAWS } from "@web3-kms-signer/kms-provider-aws";

const awsConfig = {
    region: 'us-east-1',
    credentials: {
        accessKeyId: 'YOUR_AWS_ACCESS_KEY_ID',
        secretAccessKey: 'YOUR_AWS_SECRET_ACCESS_KEY'
    }
};
const provider = new KMSProviderAWS(awsConfig);

const signer = new Signer(new KMSWallets(provider));
const signedMessage = await signer.signMessage({ keyId: 'keyId' }, "my message");

Using GCP KMS

import { Signer } from "@web3-kms-signer/core";
import { KMSWallets } from "@web3-kms-signer/kms-wallets";
import { KMSProviderGCP } from "@web3-kms-signer/kms-provider-gcp";

const gcpConfig = {
    keyFilename: 'path/to/your/gcp/keyfile.json'
};
const provider = new KMSProviderGCP(gcpConfig);
provider.setPath({
        projectId: 'your-gcp-project-id',
        locationId: 'your-gcp-location-id',
        keyRingId: 'key-ring-id' // defined before
    });

const signer = new Signer(new KMSWallets(provider));
const signedMessage = await signer.signMessage({ keyId: 'keyId' }, "my message");

Security Best Practices

Ensuring the security of cryptographic keys and transactions is paramount in the context of blockchain applications. This section outlines security best practices for using Key Management Services (KMS) and Hierarchical Deterministic (HD) wallets with the Web3 KMS Signer Library.

KMS Security

Key Management Services offer robust mechanisms for managing cryptographic keys in a secure, centralized manner. Here's how to maximize security when using KMS:

  1. Access Control: Restrict access to your KMS keys by defining precise IAM policies. Only grant necessary permissions to the roles or users that require them to perform their job functions.

  2. Audit Logs: Enable audit logging features such as AWS CloudTrail or Google Cloud Audit Logs. These services record API calls, including calls made to the KMS, providing valuable insights into usage patterns and potentially unauthorized access attempts.

  3. Key Rotation: Take advantage of automatic key rotation features to change the cryptographic material of a key regularly. This practice limits the amount of data encrypted under a single key, reducing the impact of a potential compromise.

  4. Multi-Region Keys: For critical applications, consider replicating keys across multiple regions. This approach enhances the availability and redundancy of your cryptographic keys.

HD Wallet Security

Hierarchical Deterministic (HD) Wallets generate a tree of key pairs from a single seed, providing a streamlined way to manage multiple addresses and assets. Follow these practices to secure your HD wallets:

  1. Secure Seed Phrase: The seed phrase is the root of all key pairs generated by an HD wallet. Store it securely in a password manager, and/or use a hardware security module (HSM). Avoid storing it in plaintext or online without encryption.

  2. Backup and Recovery: Regularly back up your wallet's seed phrase and derivation paths. Use secure, encrypted backup solutions, and consider a physical backup (e.g., paper or metal backup) stored in a safe location.

  3. Separation of Concerns: Use different accounts or derivation paths for different applications or purposes. This approach limits the risk to your assets if one account is compromised.

  4. Client-Side Operations: Perform sensitive operations like seed phrase generation and key derivation client-side, in a secure, isolated environment. Never transmit your seed phrase or private keys over the network.

Contributing

Contributions from the community are welcome ! For improvements or bug fixes, please submit a pull request or open an issue in the GitHub repository.

License

This project is licensed under the MIT License - see the LICENSE file for details.