npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@wangyipeng/bignumber-js

v1.0.0

Published

A library for arbitrary-precision decimal and non-decimal arithmetic

Downloads

2

Readme

bignumber.js

A JavaScript library for arbitrary-precision decimal and non-decimal arithmetic.

npm version npm downloads

Features

  • Integers and decimals
  • Simple API but full-featured
  • Faster, smaller, and perhaps easier to use than JavaScript versions of Java's BigDecimal
  • 8 KB minified and gzipped
  • Replicates the toExponential, toFixed, toPrecision and toString methods of JavaScript's Number type
  • Includes a toFraction and a correctly-rounded squareRoot method
  • Supports cryptographically-secure pseudo-random number generation
  • No dependencies
  • Wide platform compatibility: uses JavaScript 1.5 (ECMAScript 3) features only
  • Comprehensive documentation and test set

API

If a smaller and simpler library is required see big.js. It's less than half the size but only works with decimal numbers and only has half the methods. It also has fewer configuration options than this library, and does not allow NaN or Infinity.

See also decimal.js, which among other things adds support for non-integer powers, and performs all operations to a specified number of significant digits.

Load

The library is the single JavaScript file bignumber.js or ES module bignumber.mjs.

Browser:

<script src='path/to/bignumber.js'></script>

ES module

<script type="module">
import BigNumber from './path/to/bignumber.mjs';
...
</script>

Node.js:

$ npm install bignumber.js
const BigNumber = require('bignumber.js');

ES module

import BigNumber from "bignumber.js";
// or
import { BigNumber } from "bignumber.js";

Use

The library exports a single constructor function, BigNumber, which accepts a value of type Number, String or BigNumber,

let x = new BigNumber(123.4567);
let y = BigNumber('123456.7e-3');
let z = new BigNumber(x);
x.isEqualTo(y) && y.isEqualTo(z) && x.isEqualTo(z);      // true

To get the string value of a BigNumber use toString() or toFixed(). Using toFixed() prevents exponential notation being returned, no matter how large or small the value.

let x = new BigNumber('1111222233334444555566');
x.toString();                       // "1.111222233334444555566e+21"
x.toFixed();                        // "1111222233334444555566"

If the limited precision of Number values is not well understood, it is recommended to create BigNumbers from String values rather than Number values to avoid a potential loss of precision.

In all further examples below, let, semicolons and toString calls are not shown. If a commented-out value is in quotes it means toString has been called on the preceding expression.

// Precision loss from using numeric literals with more than 15 significant digits.
new BigNumber(1.0000000000000001)         // '1'
new BigNumber(88259496234518.57)          // '88259496234518.56'
new BigNumber(99999999999999999999)       // '100000000000000000000'

// Precision loss from using numeric literals outside the range of Number values.
new BigNumber(2e+308)                     // 'Infinity'
new BigNumber(1e-324)                     // '0'

// Precision loss from the unexpected result of arithmetic with Number values.
new BigNumber(0.7 + 0.1)                  // '0.7999999999999999'

When creating a BigNumber from a Number, note that a BigNumber is created from a Number's decimal toString() value not from its underlying binary value. If the latter is required, then pass the Number's toString(2) value and specify base 2.

new BigNumber(Number.MAX_VALUE.toString(2), 2)

BigNumbers can be created from values in bases from 2 to 36. See ALPHABET to extend this range.

a = new BigNumber(1011, 2)          // "11"
b = new BigNumber('zz.9', 36)       // "1295.25"
c = a.plus(b)                       // "1306.25"

Performance is better if base 10 is NOT specified for decimal values. Only specify base 10 when you want to limit the number of decimal places of the input value to the current DECIMAL_PLACES setting.

A BigNumber is immutable in the sense that it is not changed by its methods.

0.3 - 0.1                           // 0.19999999999999998
x = new BigNumber(0.3)
x.minus(0.1)                        // "0.2"
x                                   // "0.3"

The methods that return a BigNumber can be chained.

x.dividedBy(y).plus(z).times(9)
x.times('1.23456780123456789e+9').plus(9876.5432321).dividedBy('4444562598.111772').integerValue()

Some of the longer method names have a shorter alias.

x.squareRoot().dividedBy(y).exponentiatedBy(3).isEqualTo(x.sqrt().div(y).pow(3))    // true
x.modulo(y).multipliedBy(z).eq(x.mod(y).times(z))                                   // true

As with JavaScript's Number type, there are toExponential, toFixed and toPrecision methods.

x = new BigNumber(255.5)
x.toExponential(5)                  // "2.55500e+2"
x.toFixed(5)                        // "255.50000"
x.toPrecision(5)                    // "255.50"
x.toNumber()                        //  255.5

A base can be specified for toString.

Performance is better if base 10 is NOT specified, i.e. use toString() not toString(10). Only specify base 10 when you want to limit the number of decimal places of the string to the current DECIMAL_PLACES setting.

x.toString(16)                     // "ff.8"

There is a toFormat method which may be useful for internationalisation.

y = new BigNumber('1234567.898765')
y.toFormat(2)                       // "1,234,567.90"

The maximum number of decimal places of the result of an operation involving division (i.e. a division, square root, base conversion or negative power operation) is set using the set or config method of the BigNumber constructor.

The other arithmetic operations always give the exact result.

BigNumber.set({ DECIMAL_PLACES: 10, ROUNDING_MODE: 4 })

x = new BigNumber(2)
y = new BigNumber(3)
z = x.dividedBy(y)                        // "0.6666666667"
z.squareRoot()                            // "0.8164965809"
z.exponentiatedBy(-3)                     // "3.3749999995"
z.toString(2)                             // "0.1010101011"
z.multipliedBy(z)                         // "0.44444444448888888889"
z.multipliedBy(z).decimalPlaces(10)       // "0.4444444445"

There is a toFraction method with an optional maximum denominator argument

y = new BigNumber(355)
pi = y.dividedBy(113)               // "3.1415929204"
pi.toFraction()                     // [ "7853982301", "2500000000" ]
pi.toFraction(1000)                 // [ "355", "113" ]

and isNaN and isFinite methods, as NaN and Infinity are valid BigNumber values.

x = new BigNumber(NaN)                                           // "NaN"
y = new BigNumber(Infinity)                                      // "Infinity"
x.isNaN() && !y.isNaN() && !x.isFinite() && !y.isFinite()        // true

The value of a BigNumber is stored in a decimal floating point format in terms of a coefficient, exponent and sign.

x = new BigNumber(-123.456);
x.c                                 // [ 123, 45600000000000 ]  coefficient (i.e. significand)
x.e                                 // 2                        exponent
x.s                                 // -1                       sign

For advanced usage, multiple BigNumber constructors can be created, each with its own independent configuration.

// Set DECIMAL_PLACES for the original BigNumber constructor
BigNumber.set({ DECIMAL_PLACES: 10 })

// Create another BigNumber constructor, optionally passing in a configuration object
BN = BigNumber.clone({ DECIMAL_PLACES: 5 })

x = new BigNumber(1)
y = new BN(1)

x.div(3)                            // '0.3333333333'
y.div(3)                            // '0.33333'

To avoid having to call toString or valueOf on a BigNumber to get its value in the Node.js REPL or when using console.log use

BigNumber.prototype[require('util').inspect.custom] = BigNumber.prototype.valueOf;

For further information see the API reference in the doc directory.

Test

The test/modules directory contains the test scripts for each method.

The tests can be run with Node.js or a browser. For Node.js use

$ npm test

or

$ node test/test

To test a single method, use, for example

$ node test/methods/toFraction

For the browser, open test/test.html.

Build

For Node, if uglify-js is installed

npm install uglify-js -g

then

npm run build

will create bignumber.min.js.

A source map will also be created in the root directory.

Licence

The MIT Licence.

See LICENCE.