@vowpalwabbit/vowpalwabbit
v0.0.8
Published
wasm bindings for vowpal wabbit
Downloads
11
Readme
Vowpal Wabbit
Javascript bindings for VowpalWabbit
| npmjs version | Vowpal Wabbit version | Vowpal Wabbit tag | |----------|----------|----------| | 0.0.3 | 9.8.0 | wasm_v0.0.3 | | 0.0.4 | 9.8.0 | wasm_v0.0.4 | | 0.0.5 | 9.8.0 | wasm_v0.0.5 | | 0.0.6 | 9.8.0 | wasm_v0.0.6 | | 0.0.7 | 9.9.0 | wasm_v0.0.7 | | 0.0.8 | 9.10.0 | wasm_v0.0.8 |
Documentation
Examples and How-To
@vowpalwabbit/vowpalwabbit
can be used both in nodejs and in ES6 environments.
How-To include the dependency and initialize a Contextual Bandit ADF model
Full API reference here
Require returns a promise because we need to wait for the WASM module to be initialized before including and using the VowpalWabbit JS code
A VW model needs to be deleted after we are done with its usage to return the aquired memory back to the WASM runtime.
NodeJS environments
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.CbWorkspace({ args_str: "--cb_explore_adf" });
model.delete()
});
ES6 environments
import { vwPromise } from '@vowpalwabbit/vowpalwabbit';
let vwModule = await vwPromise;
let model = new vwModule.CbWorkspace({ args_str: "--cb_explore_adf" });
model.delete()
The rest of the examples are shown with the nodejs require
but the rest of the API usage is identical for both environments.
How-To call learn and predict on a Contextual Bandit model
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.CbWorkspace({ args_str: "--cb_explore_adf" });
let example = {
text_context: `shared | s_1 s_2
| a_1 b_1 c_1
| a_2 b_2 c_2
| a_3 b_3 c_3`,
};
let pred = model.predictAndSample(example);
# user defined cost function
let action_cost = calculate_cost_from_action(pred["action"])
example.labels = [{ action: pred["action"], cost: action_cost, probability: pred["score"] }];
model.learn(example);
model.delete()
});
predictAndSample
is a convenience function that samples the probability mass function that a call to vw.predict()
returns. It is possible to first predict, get the entire pmf back, and then sample from it:
let pred = model.predictAndSample(example);
let uuid = pred["uuid"];
let pred2 = model.predictAndSampleWithUUID(example, uuid);
predictAndSample
and samplePmf
generate and use a uuid
during sampling. That uuid
is available in the js object returned from both function calls and can be used for reproducability. A user defined uuid
can also be specified with these calls:
let pred = model.samplePmf(pmf);
let uuid = pred["uuid"];
let pred2 = model.samplePmfWithUUID(pmf, uuid);
or
let chosen = model.samplePmf(pmf);
let uuid = chosen["uuid"];
let chosen2 = model.samplePmfWithUUID(pmf, uuid);
How-To save/load a model
There are two ways to save/load a model
Provide a file path where the model will be saved to or loaded from
Node's fs
will be used to access the file and save/loading is blocking
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.CbWorkspace({ args_str: "--cb_explore_adf" });
let example = {
text_context: `shared | s_1 s_2
| a_1 b_1 c_1
| a_2 b_2 c_2
| a_3 b_3 c_3`,
labels = [{ action: 0, cost: 1.0, probability: 1}]
};
model.learn(example);
model.saveModelToFile("my_model.vw");
model.delete();
let model2 = new vw.CbWorkspace({ model_file: "my_model.vw" });
console.log(model2.predict(example));
model2.delete();
});
A model can be loaded from a file either during model construction (shown above) or as a separate function call:
model2.loadModelFromFile("my_model.vw");
Get the model or supply the model as a Uint8Array for user-handled storing
# get model as Uint8Array and store it using fs
let modelarray = model4.getModelAsArray();
let filePath = path.join(__dirname, "my_model.vw");
fs.writeFileSync(filePath, Buffer.from(modelarray));
# load model as a Uint8Array and call load with it
{
let modelBuffer = fs.readFileSync(filePath);
let ptr = vw.wasmModule._malloc(modelBuffer.byteLength);
let heapBytes = new Uint8Array(vw.wasmModule.HEAPU8.buffer, ptr, modelBuffer.byteLength);
heapBytes.set(new Uint8Array(modelBuffer));
model.loadModelFromArray(ptr, modelBuffer.byteLength);
vw.wasmModule._free(ptr);
}
# load model as Uint8Array and construct a new vw model with it
{
let modelBuffer = fs.readFileSync(filePath);
let ptr = vw.wasmModule._malloc(modelBuffer.byteLength);
let heapBytes = new Uint8Array(vw.wasmModule.HEAPU8.buffer, ptr, modelBuffer.byteLength);
heapBytes.set(new Uint8Array(modelBuffer));
let model = new vw.CbWorkspace({ model_array: [ptr, modelBuffer.byteLength] });
vw.wasmModule._free(ptr);
model.delete();
}
How-To log examples into a file or stringify examples for user-handled logging (currently available for nodejs environments only)
A log stream can be started which will create and use a fs
write stream:
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let example = {
text_context: `shared | s_1 s_2
| a_1 b_1 c_1
| a_2 b_2 c_2
| a_3 b_3 c_3`,
labels = [{ action: 0, cost: 1.0, probability: 1}]
};
let model = new vw.CbWorkspace({ args_str: "--cb_explore_adf" });
let vwLogger = new vw.VWExampleLogger();
vwLogger.startLogStream("mylogfile.txt");
vwLogger.logCBExampleToStream(example);
vwLogger.endLogStream();
model.delete();
});
There is also the option of stringifying an example for user-handled logging:
let cbAsString = CBExampleToString(example);
Synchronous logging options are also available see API documentation
How-To train a model with data from a file
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.CbWorkspace({ args_str: "--cb_explore_adf" });
const fileStream = fs.createReadStream(filePath);
const rl = readline.createInterface({
input: fileStream,
crlfDelay: Infinity,
output: process.stdout,
terminal: false,
});
rl.on('line', model.addLine.bind(model));
rl.on('close', () => {
assert(model.sumLoss() > 0);
model.delete();
});
});
How-To handle errors
Some function calls with throw if something went wrong or if they were called incorrectly. There are two type of errors that can be thrown: native JavaScript errors and WebAssembly runtime errors, the latter which are wrapped in a VWError object.
When logging an error to the console there needs to be a check of the error type and the logging needs to be handled accordingly:
try {}
catch (e)
{
if (e.name === 'VWError') {
console.error(vw.getExceptionMessage(e));
}
else {
console.error(e);
}
}
How-To use a generic VW model (non Contextual Bandit specific functionality)
Full API reference here
Simple regression example
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.Workspace({ args_str: "" });
let example = model.parse("|f 6:6.8953723e-02");
let prediction = model.predict(example);
model.finishExample(example);
example.delete();
model.delete();
});
CCB example
const vwPromise = require('@vowpalwabbit/vowpalwabbit');
vwPromise.then((vw) => {
let model = new vw.Workspace({ args_str: "--ccb_explore_adf" });
let example = model.parse(`
ccb shared |User b
ccb action |Action d
ccb action |Action e
ccb action |Action f
ccb action |Action ff
ccb action |Action fff
ccb slot 0:0:0.2 |Slot h
ccb slot 1:0:0.25 |Slot i
ccb slot 2:0:0.333333 |Slot j
`);
let prediction = model.predict(example);
assert(prediction[0][0].hasOwnProperty('action'));
assert(prediction[0][0].hasOwnProperty('score'));
model.finishExample(example);
example.delete();
model.delete();
});