@tignear/node-pre-gyp
v1.1.1
Published
Node.js native addon binary install tool
Downloads
25
Maintainers
Readme
@mapbox/node-pre-gyp
@mapbox/node-pre-gyp makes it easy to publish and install Node.js C++ addons from binaries
@mapbox/node-pre-gyp
stands between npm and node-gyp and offers a cross-platform method of binary deployment.
Special note on previous package
On Feb 9th, 2021 @mapbox/[email protected]
was released. Older, unscoped versions that are not part of the @mapbox
org are deprecated and only @mapbox/node-pre-gyp
will see updates going forward. To upgrade to the new package do:
npm uninstall node-pre-gyp --save
npm install @mapbox/node-pre-gyp --save
Features
- A command line tool called
node-pre-gyp
that can install your package's C++ module from a binary. - A variety of developer targeted commands for packaging, testing, and publishing binaries.
- A JavaScript module that can dynamically require your installed binary:
require('@mapbox/node-pre-gyp').find
For a hello world example of a module packaged with node-pre-gyp
see https://github.com/springmeyer/node-addon-example and the wiki for real world examples.
Credits
- The module is modeled after node-gyp by @Tootallnate
- Motivation for initial development came from @ErisDS and the Ghost Project.
- Development is sponsored by Mapbox
FAQ
See the Frequently Ask Questions.
Usage
Commands
View all possible commands:
node-pre-gyp --help
- clean - Remove the entire folder containing the compiled .node module
- install - Install pre-built binary for module
- reinstall - Run "clean" and "install" at once
- build - Compile the module by dispatching to node-gyp or nw-gyp
- rebuild - Run "clean" and "build" at once
- package - Pack binary into tarball
- testpackage - Test that the staged package is valid
You can also chain commands:
node-pre-gyp clean build package
Options
Options include:
-C/--directory
: run the command in this directory--build-from-source
: build from source instead of using pre-built binary--update-binary
: reinstall by replacing previously installed local binary with remote binary--runtime=node-webkit
: customize the runtime:node
,electron
andnode-webkit
are the valid options--fallback-to-build
: fallback to building from source if pre-built binary is not available--target=0.4.0
: Pass the target node or node-webkit version to compile against--target_arch=ia32
: Pass the target arch and override the hostarch
. Valid values are 'ia32','x64', orarm
.--target_platform=win32
: Pass the target platform and override the hostplatform
. Valid values arelinux
,darwin
,win32
,sunos
,freebsd
,openbsd
, andaix
.
Both --build-from-source
and --fallback-to-build
can be passed alone or they can provide values. You can pass --fallback-to-build=false
to override the option as declared in package.json. In addition to being able to pass --build-from-source
you can also pass --build-from-source=myapp
where myapp
is the name of your module.
For example: npm install --build-from-source=myapp
. This is useful if:
myapp
is referenced in the package.json of a larger app and thereforemyapp
is being installed as a dependency withnpm install
.- The larger app also depends on other modules installed with
node-pre-gyp
- You only want to trigger a source compile for
myapp
and the other modules.
Configuring
This is a guide to configuring your module to use node-pre-gyp.
1) Add new entries to your package.json
- Add
@mapbox/node-pre-gyp
todependencies
- Add
aws-sdk
as adevDependency
- Add a custom
install
script - Declare a
binary
object
This looks like:
"dependencies" : {
"@mapbox/node-pre-gyp": "1.x"
},
"devDependencies": {
"aws-sdk": "2.x"
}
"scripts": {
"install": "node-pre-gyp install --fallback-to-build"
},
"binary": {
"module_name": "your_module",
"module_path": "./lib/binding/",
"host": "https://your_module.s3-us-west-1.amazonaws.com"
}
For a full example see node-addon-examples's package.json.
Let's break this down:
- Dependencies need to list
node-pre-gyp
- Your devDependencies should list
aws-sdk
so that you can runnode-pre-gyp publish
locally or a CI system. We recommend usingdevDependencies
only sinceaws-sdk
is large and not needed fornode-pre-gyp install
since it only uses http to fetch binaries - Your
scripts
section should override theinstall
target with"install": "node-pre-gyp install --fallback-to-build"
. This allows node-pre-gyp to be used instead of the default npm behavior of always source compiling withnode-gyp
directly. - Your package.json should contain a
binary
section describing key properties you provide to allow node-pre-gyp to package optimally. They are detailed below.
The binary
object has three required properties
module_name
The name of your native node module. This value must:
- Match the name passed to the NODE_MODULE macro
- Must be a valid C variable name (e.g. it cannot contain
-
) - Should not include the
.node
extension.
module_path
The location your native module is placed after a build. This should be an empty directory without other Javascript files. This entire directory will be packaged in the binary tarball. When installing from a remote package this directory will be overwritten with the contents of the tarball.
Note: This property supports variables based on Versioning.
host
A url to the remote location where you've published tarball binaries (must be https
not http
).
remote_path
It is recommended that you customize this property. This is an extra path to use for publishing and finding remote tarballs. The default value for remote_path
is ""
meaning that if you do not provide it then all packages will be published at the base of the host
. It is recommended to provide a value like ./{name}/v{version}
to help organize remote packages in the case that you choose to publish multiple node addons to the same host
.
Note: This property supports variables based on Versioning.
package_name
It is not recommended to override this property unless you are also overriding the remote_path
. This is the versioned name of the remote tarball containing the binary .node
module and any supporting files you've placed inside the module_path
directory. Unless you specify package_name
in your package.json
then it defaults to {module_name}-v{version}-{node_abi}-{platform}-{arch}.tar.gz
which allows your binary to work across node versions, platforms, and architectures. If you are using remote_path
that is also versioned by ./{module_name}/v{version}
then you could remove these variables from the package_name
and just use: {node_abi}-{platform}-{arch}.tar.gz
. Then your remote tarball will be looked up at, for example, https://example.com/your-module/v0.1.0/node-v11-linux-x64.tar.gz
.
Avoiding the version of your module in the package_name
and instead only embedding in a directory name can be useful when you want to make a quick tag of your module that does not change any C++ code.
Note: This property supports variables based on Versioning.
2) Add a new target to binding.gyp
node-pre-gyp
calls out to node-gyp
to compile the module and passes variables along like module_name and module_path.
A new target must be added to binding.gyp
that moves the compiled .node
module from ./build/Release/module_name.node
into the directory specified by module_path
.
Add a target like this at the end of your targets
list:
{
"target_name": "action_after_build",
"type": "none",
"dependencies": [ "<(module_name)" ],
"copies": [
{
"files": [ "<(PRODUCT_DIR)/<(module_name).node" ],
"destination": "<(module_path)"
}
]
}
For a full example see node-addon-example's binding.gyp.
3) Dynamically require your .node
Inside the main js file that requires your addon module you are likely currently doing:
const binding = require('../build/Release/binding.node');
or:
var bindings = require('./bindings')
Change those lines to:
var binary = require('@mapbox/node-pre-gyp');
var path = require('path');
var binding_path = binary.find(path.resolve(path.join(__dirname,'./package.json')));
var binding = require(binding_path);
For a full example see node-addon-example's index.js
4) Build and package your app
Now build your module from source:
npm install --build-from-source
The --build-from-source
tells node-pre-gyp
to not look for a remote package and instead dispatch to node-gyp to build.
Now node-pre-gyp
should now also be installed as a local dependency so the command line tool it offers can be found at ./node_modules/.bin/node-pre-gyp
.
5) Test
Now npm test
should work just as it did before.
6) Publish the tarball
Then package your app:
./node_modules/.bin/node-pre-gyp package
Once packaged you can also host your binaries. To do this requires:
- You manually publish the binary created by the
package
command to anhttps
endpoint - Ensure that the
host
value points to your customhttps
endpoint.
7) You're done!
Now publish your module to the npm registry. Users will now be able to install your module from a binary.
What will happen is this:
npm install <your package>
will pull from the npm registry- npm will run the
install
script which will call out tonode-pre-gyp
node-pre-gyp
will fetch the binary.node
module and unpack in the right place- Assuming that all worked, you are done
If a a binary was not available for a given platform and --fallback-to-build
was used then node-gyp rebuild
will be called to try to source compile the module.
N-API Considerations
Node-API, which was previously known as N-API, is an ABI-stable alternative to previous technologies such as nan which are tied to a specific Node runtime engine. Node-API is Node runtime engine agnostic and guarantees modules created today will continue to run, without changes, into the future.
Using node-pre-gyp
with Node-API projects requires a handful of additional configuration values and imposes some additional requirements.
The most significant difference is that an Node-API module can be coded to target multiple Node-API versions. Therefore, an Node-API module must declare in its package.json
file which Node-API versions the module is designed to run against. In addition, since multiple builds may be required for a single module, path and file names must be specified in way that avoids naming conflicts.
The napi_versions
array property
A Node-API module must declare in its package.json
file, the Node-API versions the module is intended to support. This is accomplished by including an napi-versions
array property in the binary
object. For example:
"binary": {
"module_name": "your_module",
"module_path": "your_module_path",
"host": "https://your_bucket.s3-us-west-1.amazonaws.com",
"napi_versions": [1,3]
}
If the napi_versions
array property is not present, node-pre-gyp
operates as it always has. Including the napi_versions
array property instructs node-pre-gyp
that this is a Node-API module build.
When the napi_versions
array property is present, node-pre-gyp
fires off multiple operations, one for each of the Node-API versions in the array. In the example above, two operations are initiated, one for Node-API version 1 and second for Node-API version 3. How this version number is communicated is described next.
The napi_build_version
value
For each of the Node-API module operations node-pre-gyp
initiates, it ensures that the napi_build_version
is set appropriately.
This value is of importance in two areas:
- The C/C++ code which needs to know against which Node-API version it should compile.
node-pre-gyp
itself which must assign appropriate path and file names to avoid collisions.
Defining NAPI_VERSION
for the C/C++ code
The napi_build_version
value is communicated to the C/C++ code by adding this code to the binding.gyp
file:
"defines": [
"NAPI_VERSION=<(napi_build_version)",
]
This ensures that NAPI_VERSION
, an integer value, is declared appropriately to the C/C++ code for each build.
Note that earlier versions of this document recommended defining the symbol
NAPI_BUILD_VERSION
.NAPI_VERSION
is preferred because it used by the Node-API C/C++ headers to configure the specific Node-API versions being requested.
Path and file naming requirements in package.json
Since node-pre-gyp
fires off multiple operations for each request, it is essential that path and file names be created in such a way as to avoid collisions. This is accomplished by imposing additional path and file naming requirements.
Specifically, when performing Node-API builds, the {napi_build_version}
text configuration value must be present in the module_path
property. In addition, the {napi_build_version}
text configuration value must be present in either the remote_path
or package_name
property. (No problem if it's in both.)
Here's an example:
"binary": {
"module_name": "your_module",
"module_path": "./lib/binding/napi-v{napi_build_version}",
"remote_path": "./{module_name}/v{version}/{configuration}/",
"package_name": "{platform}-{arch}-napi-v{napi_build_version}.tar.gz",
"host": "https://your_bucket.s3-us-west-1.amazonaws.com",
"napi_versions": [1,3]
}
Supporting both N-API and NAN builds
You may have a legacy native add-on that you wish to continue supporting for those versions of Node that do not support Node-API, as you add Node-API support for later Node versions. This can be accomplished by specifying the node_napi_label
configuration value in the package.json binary.package_name
property.
Placing the configuration value node_napi_label
in the package.json binary.package_name
property instructs node-pre-gyp
to build all viable Node-API binaries supported by the current Node instance. If the current Node instance does not support Node-API, node-pre-gyp
will request a traditional, non-Node-API build.
The configuration value node_napi_label
is set by node-pre-gyp
to the type of build created, napi
or node
, and the version number. For Node-API builds, the string contains the Node-API version nad has values like napi-v3
. For traditional, non-Node-API builds, the string contains the ABI version with values like node-v46
.
Here's how the binary
configuration above might be changed to support both Node-API and NAN builds:
"binary": {
"module_name": "your_module",
"module_path": "./lib/binding/{node_napi_label}",
"remote_path": "./{module_name}/v{version}/{configuration}/",
"package_name": "{platform}-{arch}-{node_napi_label}.tar.gz",
"host": "https://your_bucket.s3-us-west-1.amazonaws.com",
"napi_versions": [1,3]
}
The C/C++ symbol NAPI_VERSION
can be used to distinguish Node-API and non-Node-API builds. The value of NAPI_VERSION
is set to the integer Node-API version for Node-API builds and is set to 0
for non-Node-API builds.
For example:
#if NAPI_VERSION
// Node-API code goes here
#else
// NAN code goes here
#endif
Two additional configuration values
The following two configuration values, which were implemented in previous versions of node-pre-gyp
, continue to exist, but have been replaced by the node_napi_label
configuration value described above.
napi_version
If Node-API is supported by the currently executing Node instance, this value is the Node-API version number supported by Node. If Node-API is not supported, this value is an empty string.node_abi_napi
If the value returned fornapi_version
is non empty, this value is'napi'
. If the value returned fornapi_version
is empty, this value is the value returned fornode_abi
.
These values are present for use in the binding.gyp
file and may be used as {napi_version}
and {node_abi_napi}
for text substituion in the binary
properties of the package.json
file.
Versioning
The binary
properties of module_path
, remote_path
, and package_name
support variable substitution. The strings are evaluated by node-pre-gyp
depending on your system and any custom build flags you passed.
node_abi
: The node C++ABI
number. This value is available in Javascript asprocess.versions.modules
as of>= v0.10.4 >= v0.11.7
and in C++ as theNODE_MODULE_VERSION
define much earlier. For versions of Node before this was available we fallback to the V8 major and minor version.platform
matches node'sprocess.platform
likelinux
,darwin
, andwin32
unless the user passed the--target_platform
option to override.arch
matches node'sprocess.arch
likex64
oria32
unless the user passes the--target_arch
option to override.libc
matchesrequire('detect-libc').family
likeglibc
ormusl
unless the user passes the--target_libc
option to override.configuration
- Either 'Release' or 'Debug' depending on if--debug
is passed during the build.module_name
- thebinary.module_name
attribute frompackage.json
.version
- the semverversion
value for your module frompackage.json
(NOTE: ignores thesemver.build
property).major
,minor
,patch
, andprelease
match the individual semver values for your module'sversion
build
- the sevmerbuild
value. For example it would bethis.that
if your package.jsonversion
wasv1.0.0+this.that
prerelease
- the semverprerelease
value. For example it would bealpha.beta
if your package.jsonversion
wasv1.0.0-alpha.beta
The options are visible in the code at https://github.com/mapbox/node-pre-gyp/blob/612b7bca2604508d881e1187614870ba19a7f0c5/lib/util/versioning.js#L114-L127
Download binary files from a mirror
S3 is broken in China for the well known reason.
Using the npm
config argument: --{module_name}_binary_host_mirror
can download binary files through a mirror, -
in module_name
will be replaced with _
.
e.g.: Install v8-profiler from npm
.
$ npm install v8-profiler --profiler_binary_host_mirror=https://npm.taobao.org/mirrors/node-inspector/
e.g.: Install canvas-prebuilt from npm
.
$ npm install canvas-prebuilt --canvas_prebuilt_binary_host_mirror=https://npm.taobao.org/mirrors/canvas-prebuilt/