npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@tensorflow/tfjs

v4.22.0

Published

An open-source machine learning framework.

Downloads

512,977

Readme

TensorFlow.js

TensorFlow.js is an open-source hardware-accelerated JavaScript library for training and deploying machine learning models.

Develop ML in the Browser Use flexible and intuitive APIs to build models from scratch using the low-level JavaScript linear algebra library or the high-level layers API.

Develop ML in Node.js Execute native TensorFlow with the same TensorFlow.js API under the Node.js runtime.

Run Existing models Use TensorFlow.js model converters to run pre-existing TensorFlow models right in the browser.

Retrain Existing models Retrain pre-existing ML models using sensor data connected to the browser or other client-side data.

About this repo

This repository contains the logic and scripts that combine several packages.

APIs:

Backends/Platforms:

If you care about bundle size, you can import those packages individually.

If you are looking for Node.js support, check out the TensorFlow.js Node directory.

Examples

Check out our examples repository and our tutorials.

Gallery

Be sure to check out the gallery of all projects related to TensorFlow.js.

Pre-trained models

Be sure to also check out our models repository where we host pre-trained models on NPM.

Benchmarks

  • Local benchmark tool. Use this webpage tool to collect the performance related metrics (speed, memory, etc) of TensorFlow.js models and kernels on your local device with CPU, WebGL or WASM backends. You can benchmark custom models by following this guide.
  • Multi-device benchmark tool. Use this tool to collect the same performance related metrics on a collection of remote devices.

Getting started

There are two main ways to get TensorFlow.js in your JavaScript project: via script tags or by installing it from NPM and using a build tool like Parcel, WebPack, or Rollup.

via Script Tag

Add the following code to an HTML file:

<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"> </script>


    <!-- Place your code in the script tag below. You can also use an external .js file -->
    <script>
      // Notice there is no 'import' statement. 'tf' is available on the index-page
      // because of the script tag above.

      // Define a model for linear regression.
      const model = tf.sequential();
      model.add(tf.layers.dense({units: 1, inputShape: [1]}));

      // Prepare the model for training: Specify the loss and the optimizer.
      model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

      // Generate some synthetic data for training.
      const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
      const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

      // Train the model using the data.
      model.fit(xs, ys).then(() => {
        // Use the model to do inference on a data point the model hasn't seen before:
        // Open the browser devtools to see the output
        model.predict(tf.tensor2d([5], [1, 1])).print();
      });
    </script>
  </head>

  <body>
  </body>
</html>

Open up that HTML file in your browser, and the code should run!

via NPM

Add TensorFlow.js to your project using yarn or npm. Note: Because we use ES2017 syntax (such as import), this workflow assumes you are using a modern browser or a bundler/transpiler to convert your code to something older browsers understand. See our examples to see how we use Parcel to build our code. However, you are free to use any build tool that you prefer.

import * as tf from '@tensorflow/tfjs';

// Define a model for linear regression.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));

// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

// Generate some synthetic data for training.
const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

// Train the model using the data.
model.fit(xs, ys).then(() => {
  // Use the model to do inference on a data point the model hasn't seen before:
  model.predict(tf.tensor2d([5], [1, 1])).print();
});

See our tutorials, examples and documentation for more details.

Importing pre-trained models

We support porting pre-trained models from:

Various ops supported in different backends

Please refer below :

Find out more

TensorFlow.js is a part of the TensorFlow ecosystem. For more info:

Thanks, BrowserStack, for providing testing support.