npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@tensorflow-models/coco-ssd

v2.2.3

Published

Object detection model (coco-ssd) in TensorFlow.js

Downloads

25,954

Readme

Object Detection (coco-ssd)

Object detection model that aims to localize and identify multiple objects in a single image.

This model is a TensorFlow.js port of the COCO-SSD model. For more information about Tensorflow object detection API, check out this readme in tensorflow/object_detection.

This model detects objects defined in the COCO dataset, which is a large-scale object detection, segmentation, and captioning dataset. You can find more information here. The model is capable of detecting 80 classes of objects. (SSD stands for Single Shot MultiBox Detection).

This TensorFlow.js model does not require you to know about machine learning. It can take input as any browser-based image elements (<img>, <video>, <canvas> elements, for example) and returns an array of bounding boxes with class name and confidence level.

Usage

There are two main ways to get this model in your JavaScript project: via script tags or by installing it from NPM and using a build tool like Parcel, WebPack, or Rollup.

via Script Tag

<!-- Load TensorFlow.js. This is required to use coco-ssd model. -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"> </script>
<!-- Load the coco-ssd model. -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd"> </script>

<!-- Replace this with your image. Make sure CORS settings allow reading the image! -->
<img id="img" src="cat.jpg"/>

<!-- Place your code in the script tag below. You can also use an external .js file -->
<script>
  // Notice there is no 'import' statement. 'cocoSsd' and 'tf' is
  // available on the index-page because of the script tag above.

  const img = document.getElementById('img');

  // Load the model.
  cocoSsd.load().then(model => {
    // detect objects in the image.
    model.detect(img).then(predictions => {
      console.log('Predictions: ', predictions);
    });
  });
</script>

via NPM

Note: The following shows how to use coco-ssd npm to transpile for web deployment, not an example on how to use coco-ssd in the node env.

// Note: Require the cpu and webgl backend and add them to package.json as peer dependencies.
require('@tensorflow/tfjs-backend-cpu');
require('@tensorflow/tfjs-backend-webgl');
const cocoSsd = require('@tensorflow-models/coco-ssd');

(async () => {
  const img = document.getElementById('img');

  // Load the model.
  const model = await cocoSsd.load();

  // Classify the image.
  const predictions = await model.detect(img);

  console.log('Predictions: ');
  console.log(predictions);
})();

You can also take a look at the demo app.

API

Loading the model

coco-ssd is the module name, which is automatically included when you use the <script src> method. When using ES6 imports, coco-ssd is the module.

export interface ModelConfig {
  base?: ObjectDetectionBaseModel;
  modelUrl?: string;
}

cocoSsd.load(config: ModelConfig = {});

Args: config Type of ModelConfig interface with following attributes:

  • base: Controls the base cnn model, can be 'mobilenet_v1', 'mobilenet_v2' or 'lite_mobilenet_v2'. Defaults to 'lite_mobilenet_v2'. lite_mobilenet_v2 is smallest in size, and fastest in inference speed. mobilenet_v2 has the highest classification accuracy.

  • modelUrl: An optional string that specifies custom url of the model. This is useful for area/countries that don't have access to the model hosted on GCP.

Returns a model object.

Detecting the objects

You can detect objects with the model without needing to create a Tensor. model.detect takes an input image element and returns an array of bounding boxes with class name and confidence level.

This method exists on the model that is loaded from cocoSsd.load.

model.detect(
  img: tf.Tensor3D | ImageData | HTMLImageElement |
      HTMLCanvasElement | HTMLVideoElement, maxNumBoxes: number, minScore: number
)

Args:

  • img: A Tensor or an image element to make a detection on.
  • maxNumBoxes: The maximum number of bounding boxes of detected objects. There can be multiple objects of the same class, but at different locations. Defaults to 20.
  • minScore: The minimum score of the returned bounding boxes of detected objects. Value between 0 and 1. Defaults to 0.5.

Returns an array of classes and probabilities that looks like:

[{
  bbox: [x, y, width, height],
  class: "person",
  score: 0.8380282521247864
}, {
  bbox: [x, y, width, height],
  class: "kite",
  score: 0.74644153267145157
}]

Technical details for advanced users

This model is based on the TensorFlow object detection API. You can download the original models from here. We applied the following optimizations to improve the performance for browser execution:

  1. Removed the post process graph from the original model.
  2. Used single class NonMaxSuppression instead of original multiple classes NonMaxSuppression for faster speed with similar accuracy.
  3. Executes NonMaxSuppression operations on CPU backend instead of WebGL to avoid delays on the texture downloads.

Here is the converter command for removing the post process graph.

tensorflowjs_converter --input_format=tf_frozen_model \
                       --output_format=tfjs_graph_model \
                       --output_node_names='Postprocessor/ExpandDims_1,Postprocessor/Slice' \
                       ./frozen_inference_graph.pb \
                       ./web_model