@stdlib/stats-wilcoxon
v0.2.2
Published
Wilcoxon signed rank test.
Downloads
1,357
Readme
Wilcoxon Signed Rank Test
One-sample and paired Wilcoxon signed rank test.
Installation
npm install @stdlib/stats-wilcoxon
Usage
var wilcoxon = require( '@stdlib/stats-wilcoxon' );
wilcoxon( x[, y][, opts] )
Performs a one-sample t-test for the null hypothesis that the data in array or typed array x
is drawn from a distribution that is symmetric around zero (i.e., with median zero).
// Differences in plant heights, see Cureton (1967)
var x = [ 6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75 ];
var out = wilcoxon( x );
/* e.g., returns
{
'rejected': true,
'alpha': 0.05,
'pValue': 0.04125976562499978,
'statistic': 96,
// ...
}
*/
When array or typed array y
is supplied, the function tests whether the paired differences x - y
come from a distribution that is symmetric around zero (i.e., with median zero).
// Patient measurements at first (x) and second (y) visit, see Hollander & Wolfe (1973)
var x = [ 1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30 ];
var y = [ 0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29 ];
var out = wilcoxon( x, y );
/* e.g., returns
{
'rejected': true,
'alpha': 0.05,
'pValue': 0.0390625,
'statistic': 40,
// ...
}
*/
The returned object comes with a .print()
method which when invoked will print a formatted output of the hypothesis test results. print
accepts a digits
option that controls the number of decimal digits displayed for the outputs and a decision
option, which when set to false
will hide the test decision.
console.log( out.print() );
/* e.g., =>
Paired Wilcoxon signed rank test
Alternative hypothesis: Median of the difference `x - y` is not equal to 0
pValue: 0.0391
statistic: 40
Test Decision: Reject null in favor of alternative at 5% significance level
*/
The wilcoxon
function accepts the following options
:
- alpha:
number
in the interval[0,1]
giving the significance level of the hypothesis test. Default:0.05
. - alternative: Either
two-sided
,less
orgreater
. Indicates whether the alternative hypothesis is that the mean ofx
is larger thanmu
(greater
), smaller thanmu
(less
), or equal tomu
(two-sided
). Default:two-sided
. - correction: continuity correction adjusting the Wilcoxon rank statistic by 0.5 towards the mean when using the normal approximation. Default:
true
. - exact: Determines whether to force use of the exact distribution instead of a normal approximation when there are more than fifty data points. Default:
false
. - mu:
number
denoting the hypothesized median under the null hypothesis. Default:0
. - zeroMethod: Method governing how zero-differences are handled (
pratt
,wilcox
, orzsplit
). Default:'wilcox'
.
By default, the hypothesis test is carried out at a significance level of 0.05
. To choose a different significance level, set the alpha
option.
var table;
var out;
var arr;
arr = [ 2, 4, 3, 1, 0 ];
out = wilcoxon( arr, {
'alpha': 0.01
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.035
statistic: 21
Test Decision: Reject null in favor of alternative at 5% significance level
*/
out = wilcoxon( arr, {
'alpha': 0.1
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.035
statistic: 21
Test Decision: Fail to reject null in favor of alternative at 1% significance level
*/
To test whether the data comes from a distribution with a median different than zero, set the mu
option.
var arr = [ 4, 4, 6, 6, 5 ];
var out = wilcoxon( arr, {
'mu': 5
});
/* e.g., returns
{
'rejected': false,
'pValue': 1,
'statistic': 0,
// ...
}
*/
By default, a two-sided test is performed. To perform either of the one-sided tests, set the alternative
option to less
or greater
.
var arr = [ 4, 4, 6, 6, 5 ];
var out = wilcoxon( arr, {
'alternative': 'less'
});
var table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is less than 0
pValue: 0.9853
statistic: 15
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
out = wilcoxon( arr, {
'alternative': 'greater'
});
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is greater than 0
pValue: 0.0284
statistic: 15
Test Decision: Reject null in favor of alternative at 5% significance level
*/
By default, all zero-differences are discarded before calculating the ranks. Set zeroMethod
to pratt
when you wish differences of zero to be used in the rank calculation but then drop them or to zsplit
when differences of zero are shall be used in the ranking procedure and the ranks then split between positive and negative ones.
var arr = [ 0, 2, 3, -1, -4, 0, 0, 8, 9 ];
var out = wilcoxon( arr, {
'zeroMethod': 'pratt'
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.331,
'statistic': 28,
// ...
}
*/
out = wilcoxon( arr, {
'zeroMethod': 'zsplit'
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.342,
'statistic': 31,
// ...
}
*/
By default, the test uses the exact distribution of the rank statistic to calculate the critical values for the test in case of no ties and no zero-differences. Since it is more computationally efficient, starting with fifty observations a normal approximation is employed. If you would like the test to use the correct distribution even for larger samples, set the exact
option to true
.
var normal = require( '@stdlib/random-base-normal' ).factory;
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 0.0, 4.0, {
'seed': 100
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
out = wilcoxon( arr, {
'exact': false
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.422,
'statistic': 2291,
// ...
}
*/
out = wilcoxon( arr, {
'exact': true
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.424,
'statistic': 2291,
// ...
}
*/
By default, when using the normal approximation, the test uses a continuity correction, which adjusts the Wilcoxon rank statistic by 0.5
towards the mean. To disable this correction, set correction
to false
.
var normal = require( '@stdlib/random-base-normal' ).factory;
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 0.0, 4.0, {
'seed': 100
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
out = wilcoxon( arr, {
'correction': false
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.421,
'statistic': 2291,
// ...
}
*/
out = wilcoxon( arr, {
'correction': true
});
/* e.g., returns
{
'rejected': false,
'alpha': 0.05,
'pValue': ~0.422,
'statistic': 2291,
// ...
}
*/
Examples
var uniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var wilcoxon = require( '@stdlib/stats-wilcoxon' );
var table;
var runif;
var arr;
var out;
var i;
runif = uniform( -50.0, 50.0, {
'seed': 37827
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = runif();
}
// Test whether distribution is symmetric around zero:
out = wilcoxon( arr );
table = out.print();
/* e.g., returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 0
pValue: 0.7714
statistic: 2438.5
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
// Test whether distribution has median of five:
out = wilcoxon( arr, {
'mu': 5.0
});
table = out.print();
/* e.g, returns
One-Sample Wilcoxon signed rank test
Alternative hypothesis: Median of `x` is not equal to 5
pValue: 0.0529
statistic: 1961.5
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
See Also
@stdlib/stats-ttest
: one-sample and paired Student's t-Test.@stdlib/stats-ztest
: one-sample and paired z-Test.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.