npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/stats-pcorrtest

v0.2.2

Published

Compute a Pearson product-moment correlation test between paired samples.

Downloads

3,095

Readme

Correlation Test

NPM version Build Status Coverage Status

Compute a Pearson product-moment correlation test between paired samples.

Installation

npm install @stdlib/stats-pcorrtest

Usage

var pcorrtest = require( '@stdlib/stats-pcorrtest' );

pcorrtest( x, y[, opts] )

By default, the function performs a t-test for the null hypothesis that the paired data in arrays or typed arrays x and y have a Pearson correlation coefficient of zero.

var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];

var out = pcorrtest( x, y );
/* e.g., returns
    {
        'alpha': 0.05,
        'rejected': true,
        'pValue': ~0.006,
        'statistic': ~3.709,
        'ci': [ ~0.332, ~0.95 ],
        'nullValue': 0,
        'pcorr': ~0.795,
        // ...
    }
*/

The returned object comes with a .print() method which when invoked will print a formatted output of the results of the hypothesis test. print accepts a digits option that controls the number of decimal digits displayed for the outputs and a decision option, which when set to false will hide the test decision.

console.log( out.print() );
/* e.g., =>
    t-test for Pearson correlation coefficient

    Alternative hypothesis: True correlation coefficient is not equal to 0

        pValue: 0.006
        statistic: 3.709
        95% confidence interval: [0.3315,0.9494]

    Test Decision: Reject null in favor of alternative at 5% significance level
*/

The function accepts the following options:

  • alpha: number in the interval [0,1] giving the significance level of the hypothesis test. Default: 0.05.
  • alternative: Either two-sided, less or greater. Indicates whether the alternative hypothesis is that x has a larger mean than y (greater), x has a smaller mean than y (less) or the means are the same (two-sided). Default: two-sided.
  • rho: number denoting the correlation between the x and y variables under the null hypothesis. Default: 0.

By default, the hypothesis test is carried out at a significance level of 0.05. To choose a different significance level, set the alpha option.

var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];

var out = pcorrtest( x, y, {
    'alpha': 0.1
});
var table = out.print();
/* e.g., returns
    t-test for Pearson correlation coefficient

    Alternative hypothesis: True correlation coefficient is not equal to 0

        pValue: 0.006
        statistic: 3.709
        90% confidence interval: [0.433,0.9363]

    Test Decision: Reject null in favor of alternative at 10% significance level
*/

By default, a two-sided test is performed. To perform either of the one-sided tests, set the alternative option to less or greater.

var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];

var out = pcorrtest( x, y, {
    'alternative': 'less'
});
var table = out.print();
/* e.g., returns
    t-test for Pearson correlation coefficient

    Alternative hypothesis: True correlation coefficient is less than 0

        pValue: 0.997
        statistic: 3.709
        95% confidence interval: [-1,0.9363]

    Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/

out = pcorrtest( x, y, {
    'alternative': 'greater'
});
table = out.print();
/* e.g., returns
    t-test for Pearson correlation coefficient

    Alternative hypothesis: True correlation coefficient is greater than 0

        pValue: 0.003
        statistic: 3.709
        95% confidence interval: [0.433,1]

    Test Decision: Reject null in favor of alternative at 5% significance level
*/

To test whether the correlation coefficient is equal to some other value than 0, set the rho option. Hypotheses tests for correlation coefficients besides zero are carried out using the Fisher z-transformation.

var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];

var out = pcorrtest( x, y, {
    'rho': 0.8
});
/* e.g., returns
    {
        'alpha': 0.05,
        'rejected': false,
        'pValue': ~0.972,
        'statistic': ~-0.035,
        'ci': [ ~0.332, ~0.949 ],
        'nullValue': 0.8,
        'pcorr': ~0.795,
        // ...
    }
*/

var table = out.print();
/* e.g., returns
    Fisher's z transform test for Pearson correlation coefficient

    Alternative hypothesis: True correlation coefficient is not equal to 0.8

        pValue: 0.972
        statistic: -0.0351
        95% confidence interval: [0.3315,0.9494]

    Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/

Examples

var rnorm = require( '@stdlib/random-base-normal' );
var sqrt = require( '@stdlib/math-base-special-sqrt' );
var pcorrtest = require( '@stdlib/stats-pcorrtest' );

var table;
var out;
var rho;
var x;
var y;
var i;

rho = 0.5;
x = new Array( 300 );
y = new Array( 300 );
for ( i = 0; i < 300; i++ ) {
    x[ i ] = rnorm( 0.0, 1.0 );
    y[ i ] = ( rho * x[ i ] ) + rnorm( 0.0, sqrt( 1.0 - (rho*rho) ) );
}

out = pcorrtest( x, y );
table = out.print();
console.log( table );

out = pcorrtest( x, y, {
    'rho': 0.5
});
table = out.print();
console.log( table );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.