@stdlib/stats-incr-pcorrdistmat
v0.2.2
Published
Compute a sample Pearson product-moment correlation distance matrix incrementally.
Downloads
122
Readme
incrpcorrdistmat
Compute a sample Pearson product-moment correlation distance matrix incrementally.
A sample Pearson product-moment correlation distance matrix is an M-by-M matrix whose elements specified by indices j
and k
are the sample Pearson product-moment correlation distances between the jth and kth data variables. The sample Pearson product-moment correlation distance is defined as
where r
is the sample Pearson product-moment correlation coefficient, cov(x,y)
is the sample covariance, and σ
corresponds to the sample standard deviation. As r
resides on the interval [-1,1]
, d
resides on the interval [0,2]
.
Installation
npm install @stdlib/stats-incr-pcorrdistmat
Usage
var incrpcorrdistmat = require( '@stdlib/stats-incr-pcorrdistmat' );
incrpcorrdistmat( out[, means] )
Returns an accumulator function
which incrementally computes a sample Pearson product-moment correlation distance matrix.
// Create an accumulator for computing a 2-dimensional correlation distance matrix:
var accumulator = incrpcorrdistmat( 2 );
The out
argument may be either the order of the correlation distance matrix or a square 2-dimensional ndarray
for storing the correlation distance matrix.
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];
// Create a 2-dimensional output correlation distance matrix:
var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
var accumulator = incrpcorrdistmat( dist );
When means are known, the function supports providing a 1-dimensional ndarray
containing mean values.
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];
var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
means.set( 0, 3.0 );
means.set( 1, -5.5 );
var accumulator = incrpcorrdistmat( 2, means );
accumulator( [vector] )
If provided a data vector, the accumulator function returns an updated sample Pearson product-moment distance correlation matrix. If not provided a data vector, the accumulator function returns the current sample Pearson product-moment correlation distance matrix.
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];
var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
buffer = new Float64Array( 2 );
shape = [ 2 ];
strides = [ 1 ];
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
var accumulator = incrpcorrdistmat( dist );
vec.set( 0, 2.0 );
vec.set( 1, 1.0 );
var out = accumulator( vec );
// returns <ndarray>
var bool = ( out === dist );
// returns true
vec.set( 0, 1.0 );
vec.set( 1, -5.0 );
out = accumulator( vec );
// returns <ndarray>
vec.set( 0, 3.0 );
vec.set( 1, 3.14 );
out = accumulator( vec );
// returns <ndarray>
out = accumulator();
// returns <ndarray>
Notes
- Due to limitations inherent in representing numeric values using floating-point format (i.e., the inability to represent numeric values with infinite precision), the correlation distance between perfectly correlated random variables may not be
0
or2
. In fact, the correlation distance is not guaranteed to be strictly on the interval[0,2]
. Any computed distance should, however, be within floating-point roundoff error.
Examples
var randu = require( '@stdlib/random-base-randu' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var Float64Array = require( '@stdlib/array-float64' );
var incrpcorrdistmat = require( '@stdlib/stats-incr-pcorrdistmat' );
var dist;
var dxy;
var dyx;
var dx;
var dy;
var i;
// Initialize an accumulator for a 2-dimensional correlation distance matrix:
var accumulator = incrpcorrdistmat( 2 );
// Create a 1-dimensional data vector:
var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
// For each simulated data vector, update the sample correlation distance matrix...
for ( i = 0; i < 100; i++ ) {
vec.set( 0, randu()*100.0 );
vec.set( 1, randu()*100.0 );
dist = accumulator( vec );
dx = dist.get( 0, 0 ).toFixed( 4 );
dy = dist.get( 1, 1 ).toFixed( 4 );
dxy = dist.get( 0, 1 ).toFixed( 4 );
dyx = dist.get( 1, 0 ).toFixed( 4 );
console.log( '[ %d, %d\n %d, %d ]', dx, dxy, dyx, dy );
}
See Also
@stdlib/stats-incr/pcorrdist
: compute a sample Pearson product-moment correlation distance.@stdlib/stats-incr/pcorrmat
: compute a sample Pearson product-moment correlation matrix incrementally.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.