npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/stats-chi2gof

v0.2.2

Published

Perform a chi-square goodness-of-fit test.

Downloads

258

Readme

Chi-square goodness-of-fit test

NPM version Build Status Coverage Status

Perform a chi-square goodness-of-fit test.

Installation

npm install @stdlib/stats-chi2gof

Usage

var chi2gof = require( '@stdlib/stats-chi2gof' );

chi2gof( x, y[, ...args][, options] )

Computes a chi-square goodness-of-fit test for the null hypothesis that the values of x come from the discrete probability distribution specified by y.

// Observed counts:
var x = [ 30, 20, 23, 27 ];

// Expected counts:
var y = [ 25, 25, 25, 25 ];

var res = chi2gof( x, y );
var o = res.toJSON();
/* returns
    {
        'rejected': false,
        'alpha': 0.05,
        'pValue': ~0.5087,
        'df': 3,
        'statistic': ~2.32,
        ...
    }
*/

The second argument can either be an array-like object (or 1-dimensional ndarray) of expected frequencies, an array-like object (or 1-dimensional ndarray) of population probabilities summing to one, or a discrete probability distribution name to test against.

// Observed counts:
var x = [ 89, 37, 30, 28, 2 ];

// Expected probabilities:
var y = [ 0.40, 0.20, 0.20, 0.15, 0.05 ];

var res = chi2gof( x, y );
var o = res.toJSON();
/* returns
    {
        'rejected': true,
        'alpha': 0.05,
        'pValue': ~0.0187,
        'df': 3,
        'statistic': ~9.9901,
        ...
    }
*/

When specifying a discrete probability distribution name, distribution parameters must be provided as additional arguments.

var Int32Array = require( '@stdlib/array-int32' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );

var res;
var x;
var v;
var i;

// Simulate expected counts...
x = new Int32Array( 100 );
for ( i = 0; i < x.length; i++ ) {
    v = discreteUniform( 0, 99 );
    x[ v ] += 1;
}

res = chi2gof( x, 'discrete-uniform', 0, 99 );
// returns {...}

The function accepts the following options:

  • alpha: significance level of the hypothesis test. Must be on the interval [0,1]. Default: 0.05.
  • ddof: "delta degrees of freedom" adjustment. Must be a nonnegative integer. Default: 0.
  • simulate: boolean indicating whether to calculate p-values by Monte Carlo simulation. Default: false.
  • iterations: number of Monte Carlo iterations. Default: 500.

By default, the test is performed at a significance level of 0.05. To adjust the significance level, set the alpha option.

var x = [ 89, 37, 30, 28, 2 ];
var p = [ 0.40, 0.20, 0.20, 0.15, 0.05 ];

var res = chi2gof( x, p );

var table = res.toString();
/* e.g., returns

    Chi-square goodness-of-fit test

    Null hypothesis: population probabilities are equal to those in p

        pValue: 0.0186
        statistic: 9.9901
        degrees of freedom: 3

    Test Decision: Reject null in favor of alternative at 5% significance level

*/

res = chi2gof( x, p, {
    'alpha': 0.01
});

table = res.toString();
/* e.g., returns

    Chi-square goodness-of-fit test

    Null hypothesis: population probabilities are equal to those in p

        pValue: 0.0186
        statistic: 9.9901
        degrees of freedom: 3

    Test Decision: Fail to reject null in favor of alternative at 1% significance level

*/

By default, the p-value is computed using a chi-square distribution with k-1 degrees of freedom, where k is the length of x. If provided distribution arguments are estimated (e.g., via maximum likelihood estimation), the degrees of freedom should be corrected. Set the ddof option to use k-1-n degrees of freedom, where n is the degrees of freedom adjustment.

var x = [ 89, 37, 30, 28, 2 ];
var p = [ 0.40, 0.20, 0.20, 0.15, 0.05 ];

var res = chi2gof( x, p, {
    'ddof': 1
});

var o = res.toJSON();
// returns { 'pValue': ~0.0186, 'statistic': ~9.9901, 'df': 3, ... }

Instead of relying on chi-square approximation to calculate the p-value, one can use Monte Carlo simulation. When the simulate option is true, the simulation is performed by re-sampling from the discrete probability distribution specified by y.

var x = [ 89, 37, 30, 28, 2 ];
var p = [ 0.40, 0.20, 0.20, 0.15, 0.05 ];

var res = chi2gof( x, p, {
    'simulate': true,
    'iterations': 1000 // explicitly set the number of Monte Carlo simulations
});
// returns {...}

The function returns a results object having the following properties:

  • alpha: significance level.
  • rejected: boolean indicating the test decision.
  • pValue: test p-value.
  • statistic: test statistic.
  • df: degrees of freedom.
  • method: test name.
  • toString: serializes results as formatted test output.
  • toJSON: serializes results as a JSON object.

To print formatted test output, invoke the toString method. The method accepts the following options:

  • digits: number of displayed decimal digits. Default: 4.
  • decision: boolean indicating whether to show the test decision. Default: true.
var x = [ 89, 37, 30, 28, 2 ];
var p = [ 0.40, 0.20, 0.20, 0.15, 0.05 ];

var res = chi2gof( x, p );

var table = res.toString({
    'decision': false
});
/* e.g., returns

    Chi-square goodness-of-fit test

    Null hypothesis: population probabilities are equal to those in p

        pValue: 0.0186
        statistic: 9.9901
        degrees of freedom: 3

*/

Notes

  • The chi-square approximation may be incorrect if the observed or expected frequencies in each category are too small. Common practice is to require frequencies greater than five.

Examples

var poisson = require( '@stdlib/random-base-poisson' );
var Int32Array = require( '@stdlib/array-int32' );
var chi2gof = require( '@stdlib/stats-chi2gof' );

var N = 400;
var lambda = 3.0;
var rpois = poisson.factory( lambda );

// Draw samples from a Poisson distribution:
var x = [];
var i;
for ( i = 0; i < N; i++ ) {
    x.push( rpois() );
}

// Generate a frequency table:
var freqs = new Int32Array( N );
for ( i = 0; i < N; i++ ) {
    freqs[ x[ i ] ] += 1;
}

// Assess whether the simulated values come from a Poisson distribution:
var out = chi2gof( freqs, 'poisson', lambda );
// returns {...}

console.log( out.toString() );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.