@stdlib/stats-base-dsnanmeanwd
v0.2.2
Published
Calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
Downloads
187
Readme
dsnanmeanwd
Calculate the arithmetic mean of a single-precision floating-point strided array, ignoring
NaN
values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
The arithmetic mean is defined as
Installation
npm install @stdlib/stats-base-dsnanmeanwd
Usage
var dsnanmeanwd = require( '@stdlib/stats-base-dsnanmeanwd' );
dsnanmeanwd( N, x, stride )
Computes the arithmetic mean of a single-precision floating-point strided array x
, ignoring NaN
values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmeanwd( N, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmeanwd( N, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dsnanmeanwd( N, x1, 2 );
// returns 1.25
dsnanmeanwd.ndarray( N, x, stride, offset )
Computes the arithmetic mean of a single-precision floating-point strided array, ignoring NaN
values and using Welford's algorithm with extended accumulation and alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmeanwd.ndarray( N, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x
starting from the second value
var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmeanwd.ndarray( N, x, 2, 1 );
// returns 1.25
Notes
- If
N <= 0
, both functions returnNaN
. - If every indexed element is
NaN
, both functions returnNaN
. - Accumulated intermediate values are stored as double-precision floating-point numbers.
Examples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float32Array = require( '@stdlib/array-float32' );
var dsnanmeanwd = require( '@stdlib/stats-base-dsnanmeanwd' );
var x;
var i;
x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
}
console.log( x );
var v = dsnanmeanwd( x.length, x, 1 );
console.log( v );
References
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.
See Also
@stdlib/stats-base/dnanmeanwd
: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring NaN values.@stdlib/stats-base/dsmeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.@stdlib/stats-base/dsnanmean
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using extended accumulation, and returning an extended precision result.@stdlib/stats-base/nanmeanwd
: calculate the arithmetic mean of a strided array, ignoring NaN values and using Welford's algorithm.@stdlib/stats-base/sdsnanmean
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using extended accumulation.@stdlib/stats-base/snanmeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using Welford's algorithm.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.