@stdlib/stats-base-dminsorted
v0.2.2
Published
Calculate the minimum value of a sorted double-precision floating-point strided array.
Downloads
173
Readme
dminsorted
Calculate the minimum value of a sorted double-precision floating-point strided array.
Installation
npm install @stdlib/stats-base-dminsorted
Usage
var dminsorted = require( '@stdlib/stats-base-dminsorted' );
dminsorted( N, x, stride )
Computes the minimum value of a sorted double-precision floating-point strided array x
.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var N = x.length;
var v = dminsorted( N, x, 1 );
// returns 1.0
x = new Float64Array( [ 3.0, 2.0, 1.0 ] );
N = x.length;
v = dminsorted( N, x, 1 );
// returns 1.0
The function has the following parameters:
- N: number of indexed elements.
- x: sorted input
Float64Array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the minimum value of every other element in x
,
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, 3.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );
var v = dminsorted( N, x, 2 );
// returns 1.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dminsorted( N, x1, 2 );
// returns 1.0
dminsorted.ndarray( N, x, stride, offset )
Computes the minimum value of a sorted double-precision floating-point strided array using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var N = x.length;
var v = dminsorted.ndarray( N, x, 1, 0 );
// returns 1.0
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the minimum value for every other value in x
starting from the second value
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );
var v = dminsorted.ndarray( N, x, 2, 1 );
// returns 1.0
Notes
- If
N <= 0
, both functions returnNaN
. - The input strided array must be sorted in either strictly ascending or descending order.
Examples
var Float64Array = require( '@stdlib/array-float64' );
var dminsorted = require( '@stdlib/stats-base-dminsorted' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = i - 5.0;
}
console.log( x );
var v = dminsorted( x.length, x, 1 );
console.log( v );
See Also
@stdlib/stats-base/dmin
: calculate the minimum value of a double-precision floating-point strided array.@stdlib/stats-base/dmaxsorted
: calculate the maximum value of a sorted double-precision floating-point strided array.@stdlib/stats-base/minsorted
: calculate the minimum value of a sorted strided array.@stdlib/stats-base/sminsorted
: calculate the minimum value of a sorted single-precision floating-point strided array.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.