@stdlib/stats-base-dists-weibull-mgf
v0.2.2
Published
Weibull distribution moment-generating function (MGF).
Downloads
957
Readme
Moment-Generating Function
Weibull distribution moment-generating function (MGF).
The moment-generating function for a Weibull random variable is
where lambda > 0
is the scale paramater and k > 0
is the shape parameter.
Installation
npm install @stdlib/stats-base-dists-weibull-mgf
Usage
var mgf = require( '@stdlib/stats-base-dists-weibull-mgf' );
mgf( t, k, lambda )
Evaluates the moment-generating function (MGF) for a Weibull distribution with shape parameter k
and scale parameter lambda
.
var y = mgf( 1.0, 1.0, 0.5);
// returns ~2.0
y = mgf( -1.0, 4.0, 4.0 );
// returns ~0.019
If provided NaN
as any argument, the function returns NaN
.
var y = mgf( NaN, 1.0, 1.0 );
// returns NaN
y = mgf( 0.0, NaN, 1.0 );
// returns NaN
y = mgf( 0.0, 1.0, NaN );
// returns NaN
If provided k <= 0
, the function returns NaN
.
var y = mgf( 0.2, -1.0, 0.5 );
// returns NaN
y = mgf( 0.2, 0.0, 0.5 );
// returns NaN
If provided lambda <= 0
, the function returns NaN
.
var y = mgf( 0.2, 0.5, -1.0 );
// returns NaN
y = mgf( 0.2, 0.5, 0.0 );
// returns NaN
mgf.factory( k, lambda )
Returns a function for evaluating the moment-generating function of a Weibull distribution with shape parameter k
and scale parameter lambda
.
var myMGF = mgf.factory( 8.0, 10.0 );
var y = myMGF( 0.8 );
// returns ~3150.149
y = myMGF( 0.08 );
// returns ~2.137
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mgf = require( '@stdlib/stats-base-dists-weibull-mgf' );
var lambda;
var k;
var t;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
t = randu() * 5.0;
lambda = ( randu() * 10.0 ) + EPS;
k = ( randu() * 10.0 ) + EPS;
y = mgf( t, lambda, k );
console.log( 'x: %d, k: %d, λ: %d, M_X(t;k,λ): %d', t.toFixed( 4 ), k.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.