@stdlib/stats-base-dists-weibull-kurtosis
v0.2.2
Published
Weibull distribution excess kurtosis.
Downloads
941
Readme
Kurtosis
Weibull distribution excess kurtosis.
The excess kurtosis for a Weibull random variable with shape parameter λ > 0
and scale parameter k > 0
is
where Γ_i = Γ( 1 + i / k )
.
Installation
npm install @stdlib/stats-base-dists-weibull-kurtosis
Usage
var kurtosis = require( '@stdlib/stats-base-dists-weibull-kurtosis' );
kurtosis( k, lambda )
Returns the excess kurtosis of a Weibull distribution with shape parameter k
and scale parameter lambda
.
var v = kurtosis( 1.0, 1.0 );
// returns 6.0
v = kurtosis( 4.0, 12.0 );
// returns ~-0.252
v = kurtosis( 8.0, 2.0 );
// returns ~0.328
If provided NaN
as any argument, the function returns NaN
.
var v = kurtosis( NaN, 2.0 );
// returns NaN
v = kurtosis( 2.0, NaN );
// returns NaN
If provided k <= 0
, the function returns NaN
.
var v = kurtosis( 0.0, 1.0 );
// returns NaN
v = kurtosis( -1.0, 1.0 );
// returns NaN
If provided lambda <= 0
, the function returns NaN
.
var v = kurtosis( 1.0, 0.0 );
// returns NaN
v = kurtosis( 1.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var kurtosis = require( '@stdlib/stats-base-dists-weibull-kurtosis' );
var lambda;
var k;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
k = ( randu()*10.0 ) + EPS;
lambda = ( randu()*10.0 ) + EPS;
v = kurtosis( k, lambda );
console.log( 'k: %d, λ: %d, Kurt(X;k,λ): %d', k.toFixed( 4 ), lambda.toFixed( 4 ), v.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.