@stdlib/stats-base-dists-uniform-kurtosis
v0.2.2
Published
Uniform distribution excess kurtosis.
Downloads
278
Readme
Kurtosis
Uniform distribution excess kurtosis.
The excess kurtosis for a uniform random variable with minimum support a
and maximum support b
is
Installation
npm install @stdlib/stats-base-dists-uniform-kurtosis
Usage
var kurtosis = require( '@stdlib/stats-base-dists-uniform-kurtosis' );
kurtosis( a, b )
Returns the excess kurtosis of a uniform distribution with parameters a
(minimum support) and b
(maximum support).
var v = kurtosis( 0.0, 1.0 );
// returns -1.2
v = kurtosis( 4.0, 12.0 );
// returns -1.2
v = kurtosis( 2.0, 8.0 );
// returns -1.2
If provided NaN
as any argument, the function returns NaN
.
var v = kurtosis( NaN, 2.0 );
// returns NaN
v = kurtosis( 2.0, NaN );
// returns NaN
If provided a >= b
, the function returns NaN
.
var y = kurtosis( 3.0, 2.0 );
// returns NaN
y = kurtosis( 3.0, 3.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var kurtosis = require( '@stdlib/stats-base-dists-uniform-kurtosis' );
var a;
var b;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
a = ( randu()*10.0 );
b = ( randu()*10.0 ) + a;
v = kurtosis( a, b );
console.log( 'a: %d, b: %d, Kurt(X;a,b): %d', a.toFixed( 4 ), b.toFixed( 4 ), v.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.