@stdlib/stats-base-dists-uniform-entropy
v0.2.2
Published
Uniform distribution differential entropy.
Downloads
294
Readme
Entropy
Uniform distribution differential entropy.
The differential entropy (in nats) for a uniform random variable is
where a
is the minimum support and b
is the maximum support. The parameters must satisfy a < b
.
Installation
npm install @stdlib/stats-base-dists-uniform-entropy
Usage
var entropy = require( '@stdlib/stats-base-dists-uniform-entropy' );
entropy( a, b )
Returns the differential entropy of a uniform distribution with minimum support a
and maximum support b
(in nats).
var v = entropy( 0.0, 1.0 );
// returns 0.0
v = entropy( 4.0, 12.0 );
// returns ~2.079
v = entropy( 2.0, 8.0 );
// returns ~1.792
If provided NaN
as any argument, the function returns NaN
.
var v = entropy( NaN, 2.0 );
// returns NaN
v = entropy( 2.0, NaN );
// returns NaN
If provided a >= b
, the function returns NaN
.
var y = entropy( 3.0, 2.0 );
// returns NaN
y = entropy( 3.0, 3.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var entropy = require( '@stdlib/stats-base-dists-uniform-entropy' );
var a;
var b;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
a = ( randu()*10.0 );
b = ( randu()*10.0 ) + a;
v = entropy( a, b );
console.log( 'a: %d, b: %d, h(X;a,b): %d', a.toFixed( 4 ), b.toFixed( 4 ), v.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.