@stdlib/stats-base-dists-normal-kurtosis
v0.2.2
Published
Normal distribution excess kurtosis.
Downloads
1,206
Readme
Kurtosis
Normal distribution excess kurtosis.
The excess kurtosis for a normal random variable with mean μ
and standard deviation σ > 0
is
Installation
npm install @stdlib/stats-base-dists-normal-kurtosis
Usage
var kurtosis = require( '@stdlib/stats-base-dists-normal-kurtosis' );
kurtosis( mu, sigma )
Returns the excess kurtosis for a normal distribution with parameters mu
(mean) and sigma
(standard deviation).
var y = kurtosis( 2.0, 1.0 );
// returns 0.0
y = kurtosis( -1.0, 4.0 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = kurtosis( NaN, 1.0 );
// returns NaN
y = kurtosis( 0.0, NaN );
// returns NaN
If provided sigma <= 0
, the function returns NaN
.
var y = kurtosis( 0.0, 0.0 );
// returns NaN
y = kurtosis( 0.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var kurtosis = require( '@stdlib/stats-base-dists-normal-kurtosis' );
var sigma;
var mu;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
mu = ( randu()*10.0 ) - 5.0;
sigma = randu() * 20.0;
y = kurtosis( mu, sigma );
console.log( 'µ: %d, σ: %d, Kurt(X;µ,σ): %d', mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.