@stdlib/stats-base-dists-negative-binomial-pmf
v0.1.2
Published
Negative binomial distribution probability mass function (PMF).
Downloads
5,692
Readme
Probability Mass Function
Negative binomial distribution probability mass function (PMF).
The probability mass function (PMF) for a negative binomial random variable X
is
where r > 0
is the number of successes until experiment is stopped and 0 < p <= 1
is the success probability. The random variable X
denotes the number of failures until the r
success is reached.
Installation
npm install @stdlib/stats-base-dists-negative-binomial-pmf
Usage
var pmf = require( '@stdlib/stats-base-dists-negative-binomial-pmf' );
pmf( x, r, p )
Evaluates the probability mass function for a negative binomial distribution with number of successes until experiment is stopped r
and success probability p
.
var y = pmf( 5.0, 20.0, 0.8 );
// returns ~0.157
y = pmf( 21.0, 20.0, 0.5 );
// returns ~0.06
y = pmf( 5.0, 10.0, 0.4 );
// returns ~0.016
y = pmf( 0.0, 10.0, 0.9 );
// returns ~0.349
While r
can be interpreted as the number of successes until the experiment is stopped, the negative binomial distribution is also defined for non-integers r
. In this case, r
denotes shape parameter of the gamma mixing distribution.
var y = pmf( 21.0, 15.5, 0.5 );
// returns ~0.037
y = pmf( 5.0, 7.4, 0.4 );
// returns ~0.051
If provided a r
which is not a positive number, the function returns NaN
.
var y = pmf( 2.0, 0.0, 0.5 );
// returns NaN
y = pmf( 2.0, -2.0, 0.5 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = pmf( NaN, 20.0, 0.5 );
// returns NaN
y = pmf( 0.0, NaN, 0.5 );
// returns NaN
y = pmf( 0.0, 20.0, NaN );
// returns NaN
If provided a success probability p
outside of [0,1]
, the function returns NaN
.
var y = pmf( 2.0, 20, -1.0 );
// returns NaN
y = pmf( 2.0, 20, 1.5 );
// returns NaN
pmf.factory( r, p )
Returns a function for evaluating the probability mass function (PMF) of a negative binomial distribution with number of successes until experiment is stopped r
and success probability p
.
var mypmf = pmf.factory( 10, 0.5 );
var y = mypmf( 3.0 );
// returns ~0.03
y = mypmf( 10.0 );
// returns ~0.088
Examples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var pmf = require( '@stdlib/stats-base-dists-negative-binomial-pmf' );
var i;
var r;
var p;
var x;
var y;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 30 );
r = randu() * 50;
p = randu();
y = pmf( x, r, p );
console.log( 'x: %d, r: %d, p: %d, P(X=x;r,p): %d', x, r, p.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
Copyright
Copyright © 2016-2024. The Stdlib Authors.