@stdlib/stats-base-dists-lognormal-pdf
v0.2.2
Published
Lognormal distribution probability density function (PDF).
Downloads
1,805
Readme
Probability Density Function
Lognormal distribution probability density function (PDF).
The probability density function (PDF) for a lognormal random variable is
where mu
is the location parameter and sigma > 0
is the scale parameter. According to the definition, the natural logarithm of a random variable from a
lognormal distribution follows a normal distribution.
Installation
npm install @stdlib/stats-base-dists-lognormal-pdf
Usage
var pdf = require( '@stdlib/stats-base-dists-lognormal-pdf' );
pdf( x, mu, sigma )
Evaluates the probability density function (PDF) for a lognormal distribution with parameters mu
(location parameter) and sigma
(scale parameter).
var y = pdf( 2.0, 0.0, 1.0 );
// returns ~0.157
y = pdf( 1.0, 0.0, 1.0 );
// returns ~0.399
y = pdf( 1.0, 3.0, 1.0 );
// returns ~0.004
If provided NaN
as any argument, the function returns NaN
.
var y = pdf( NaN, 0.0, 1.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0 );
// returns NaN
y = pdf( 0.0, 0.0, NaN );
// returns NaN
If provided sigma <= 0
, the function returns NaN
.
var y = pdf( 2.0, 0.0, -1.0 );
// returns NaN
y = pdf( 2.0, 0.0, 0.0 );
// returns NaN
pdf.factory( mu, sigma )
Returns a function for evaluating the probability density function (PDF) of a lognormal distribution with parameters mu
(location parameter) and sigma
(scale parameter).
var mypdf = pdf.factory( 4.0, 2.0 );
var y = mypdf( 10.0 );
// returns ~0.014
y = mypdf( 2.0 );
// returns ~0.025
Examples
var randu = require( '@stdlib/random-base-randu' );
var pdf = require( '@stdlib/stats-base-dists-lognormal-pdf' );
var sigma;
var mu;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
mu = (randu() * 10.0) - 5.0;
sigma = randu() * 20.0;
y = pdf( x, mu, sigma );
console.log( 'x: %d, µ: %d, σ: %d, f(x;µ,σ): %d', x.toFixed( 4 ), mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.