@stdlib/stats-base-dists-laplace-mgf
v0.2.2
Published
Laplace (Double Exponential) distribution moment-generating function (MGF).
Downloads
297
Readme
Moment-Generating Function
Laplace distribution moment-generating function (MGF).
The moment-generating function for a Laplace (double exponential) random variable is
where mu
is the location parameter and b
is the scale parameter. For |t| >= 1/b
, the MGF is undefined.
Installation
npm install @stdlib/stats-base-dists-laplace-mgf
Usage
var mgf = require( '@stdlib/stats-base-dists-laplace-mgf' );
mgf( t, mu, b )
Evaluates the moment-generating function (MGF) for a Laplace (double exponential) distribution with parameters mu
(location) and b
(scale).
var y = mgf( 0.5, 0.0, 1.0 );
// returns ~1.333
y = mgf( 0.0, 0.0, 1.0 );
// returns 1.0
y = mgf( -1.0, 4.0, 0.2 );
// returns ~0.019
If provided NaN
as any argument, the function returns NaN
.
var y = mgf( NaN, 0.0, 1.0 );
// returns NaN
y = mgf( 0.0, NaN, 1.0 );
// returns NaN
y = mgf( 0.0, 0.0, NaN );
// returns NaN
If t
is not inside the interval (-1/b, 1/b)
, the function returns NaN
.
var y = mgf( 1.0, 0.0, 2.0 );
// returns NaN
y = mgf( -0.5, 0.0, 4.0 );
// returns NaN
If provided b <= 0
, the function returns NaN
.
var y = mgf( 2.0, 0.0, 0.0 );
// returns NaN
y = mgf( 2.0, 0.0, -1.0 );
// returns NaN
mgf.factory( mu, b )
Returns a function for evaluating the moment-generating function (MGF) of a Laplace (double exponential) distribution with parameters mu
and b
.
var mymgf = mgf.factory( 4.0, 2.0 );
var y = mymgf( 0.2 );
// returns ~2.649
y = mymgf( 0.4 );
// returns ~13.758
Examples
var randu = require( '@stdlib/random-base-randu' );
var mgf = require( '@stdlib/stats-base-dists-laplace-mgf' );
var mu;
var b;
var t;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
t = randu();
mu = (randu() * 10.0) - 5.0;
b = randu() * 20.0;
y = mgf( t, mu, b );
console.log( 't: %d, µ: %d, b: %d, M_X(t;µ,b): %d', t.toFixed( 4 ), mu.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.