@stdlib/stats-base-dists-kumaraswamy-quantile
v0.2.2
Published
Kumaraswamy's double bounded distribution quantile function.
Downloads
266
Readme
Quantile Function
Kumaraswamy's double bounded distribution quantile function.
The quantile function for a Kumaraswamy's double bounded random variable is
for 0 <= p <= 1
, where a > 0
is the first shape parameter and b > 0
is the second shape parameter.
Installation
npm install @stdlib/stats-base-dists-kumaraswamy-quantile
Usage
var quantile = require( '@stdlib/stats-base-dists-kumaraswamy-quantile' );
quantile( p, a, b )
Evaluates the quantile function for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var y = quantile( 0.5, 1.0, 1.0 );
// returns 0.5
y = quantile( 0.5, 2.0, 4.0 );
// returns ~0.399
y = quantile( 0.2, 2.0, 2.0 );
// returns ~0.325
y = quantile( 0.8, 4.0, 4.0 );
// returns ~0.759
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( -0.5, 4.0, 2.0 );
// returns NaN
y = quantile( 1.5, 4.0, 2.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 1.0, 1.0 );
// returns NaN
y = quantile( 0.2, NaN, 1.0 );
// returns NaN
y = quantile( 0.2, 1.0, NaN );
// returns NaN
If provided a <= 0
, the function returns NaN
.
var y = quantile( 0.2, -1.0, 0.5 );
// returns NaN
y = quantile( 0.2, 0.0, 0.5 );
// returns NaN
If provided b <= 0
, the function returns NaN
.
var y = quantile( 0.2, 0.5, -1.0 );
// returns NaN
y = quantile( 0.2, 0.5, 0.0 );
// returns NaN
quantile.factory( a, b )
Returns a function for evaluating the quantile function for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var myQuantile = quantile.factory( 0.5, 0.5 );
var y = myQuantile( 0.8 );
// returns ~0.922
y = myQuantile( 0.3 );
// returns ~0.26
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var quantile = require( '@stdlib/stats-base-dists-kumaraswamy-quantile' );
var a;
var b;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
a = ( randu()*5.0 ) + EPS;
b = ( randu()*5.0 ) + EPS;
y = quantile( p, a, b );
console.log( 'p: %d, a: %d, b: %d, Q(p;a,b): %d', p.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.