@stdlib/stats-base-dists-gumbel-skewness
v0.2.2
Published
Gumbel distribution skewness.
Downloads
273
Readme
Skewness
The skewness for a Gumbel random variable with location μ
and scale β
is
where ζ
is the Riemann zeta function.
Installation
npm install @stdlib/stats-base-dists-gumbel-skewness
Usage
var skewness = require( '@stdlib/stats-base-dists-gumbel-skewness' );
skewness( mu, beta )
Returns the skewness for a Gumbel distribution with location parameter mu
and scale parameter beta
.
var y = skewness( 2.0, 1.0 );
// returns ~1.14
y = skewness( 0.0, 1.0 );
// returns ~1.14
y = skewness( -1.0, 4.0 );
// returns ~1.14
If provided NaN
as any argument, the function returns NaN
.
var y = skewness( NaN, 1.0 );
// returns NaN
y = skewness( 0.0, NaN );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = skewness( 0.0, 0.0 );
// returns NaN
y = skewness( 0.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var skewness = require( '@stdlib/stats-base-dists-gumbel-skewness' );
var beta;
var mu;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
mu = ( randu()*10.0 ) - 5.0;
beta = randu() * 20.0;
y = skewness( mu, beta );
console.log( 'µ: %d, β: %d, skew(X;µ,β): %d', mu.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.