@stdlib/stats-base-dists-gumbel-quantile
v0.2.2
Published
Gumbel distribution quantile function.
Downloads
259
Readme
Quantile Function
Gumbel distribution quantile function.
The quantile function for a Gumbel random variable is
for 0 <= p < 1
, where mu
is the location parameter and beta > 0
is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-gumbel-quantile
Usage
var quantile = require( '@stdlib/stats-base-dists-gumbel-quantile' );
quantile( p, mu, beta )
Evaluates the quantile function for a Gumbel distribution with parameters mu
(location parameter) and beta
(scale parameter).
var y = quantile( 0.8, 0.0, 1.0 );
// returns ~1.5
y = quantile( 0.5, 4.0, 2.0 );
// returns ~4.733
y = quantile( 0.5, 4.0, 4.0 );
// returns ~5.466
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( 1.9, 0.0, 1.0 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 0.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 0.0, NaN );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = quantile( 0.4, 0.0, -1.0 );
// returns NaN
y = quantile( 0.4, 0.0, 0.0 );
// returns NaN
quantile.factory( mu, beta )
Returns a function for evaluating the quantile function of a Gumbel distribution with parameters mu
and beta
.
var myquantile = quantile.factory( 10.0, 2.0 );
var y = myquantile( 0.2 );
// returns ~9.048
y = myquantile( 0.8 );
// returns ~13.00
Examples
var randu = require( '@stdlib/random-base-randu' );
var quantile = require( '@stdlib/stats-base-dists-gumbel-quantile' );
var beta;
var mu;
var p;
var y;
var i;
for ( i = 0; i < 100; i++ ) {
p = randu();
mu = randu() * 10.0;
beta = randu() * 10.0;
y = quantile( p, mu, beta );
console.log( 'p: %d, µ: %d, β: %d, Q(p;µ,β): %d', p.toFixed( 4 ), mu.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.