@stdlib/stats-base-dists-f-pdf
v0.2.2
Published
F distribution probability density function (PDF).
Downloads
288
Readme
Probability Density Function
F distribution probability density function (PDF).
The probability density function (PDF) for a F random variable is
where d1
is the numerator degrees of freedom and d2
is the denominator degrees of freedom and B
is the Beta
function.
Installation
npm install @stdlib/stats-base-dists-f-pdf
Usage
var pdf = require( '@stdlib/stats-base-dists-f-pdf' );
pdf( x, d1, d2 )
Evaluates the probability density function (PDF) for a F distribution with parameters d1
(numerator degrees of freedom) and d2
(denominator degrees of freedom).
var y = pdf( 2.0, 0.5, 1.0 );
// returns ~0.057
y = pdf( 0.1, 1.0, 1.0 );
// returns ~0.915
y = pdf( -1.0, 4.0, 2.0 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = pdf( NaN, 1.0, 1.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0 );
// returns NaN
y = pdf( 0.0, 1.0, NaN );
// returns NaN
If provided d1 <= 0
, the function returns NaN
.
var y = pdf( 2.0, 0.0, 1.0 );
// returns NaN
y = pdf( 2.0, -1.0, 1.0 );
// returns NaN
If provided d2 <= 0
, the function returns NaN
.
var y = pdf( 2.0, 1.0, 0.0 );
// returns NaN
y = pdf( 2.0, 1.0, -1.0 );
// returns NaN
pdf.factory( d1, d2 )
Returns a function
for evaluating the PDF of a F distribution with parameters d1
(numerator degrees of freedom) and d2
(denominator degrees of freedom).
var mypdf = pdf.factory( 6.0, 7.0 );
var y = mypdf( 7.0 );
// returns ~0.004
y = mypdf( 2.0 );
// returns ~0.166
Examples
var randu = require( '@stdlib/random-base-randu' );
var pdf = require( '@stdlib/stats-base-dists-f-pdf' );
var d1;
var d2;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 4.0;
d1 = randu() * 10.0;
d2 = randu() * 10.0;
y = pdf( x, d1, d2 );
console.log( 'x: %d, d1: %d, d2: %d, f(x;d1,d2): %d', x.toFixed( 4 ), d1.toFixed( 4 ), d2.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
Copyright
Copyright © 2016-2024. The Stdlib Authors.