@stdlib/stats-base-dists-discrete-uniform-pmf
v0.2.1
Published
Discrete uniform distribution probability mass function (PMF).
Downloads
500
Readme
Probability Mass Function
Discrete uniform distribution probability mass function (PMF).
The probability mass function (PMF) for a discrete uniform random variable is
where a
is the minimum support and b
is the maximum support of the distribution. The parameters must satisfy a <= b
.
Installation
npm install @stdlib/stats-base-dists-discrete-uniform-pmf
Usage
var pmf = require( '@stdlib/stats-base-dists-discrete-uniform-pmf' );
pmf( x, a, b )
Evaluates the probability mass function (PMF) for a discrete uniform distribution with parameters a
(minimum support) and b
(maximum support).
var y = pmf( 2.0, 0, 4 );
// returns ~0.2
y = pmf( 5.0, 0, 4 );
// returns 0.0
y = pmf( 3, -4, 4 );
// returns ~0.111
If provided NaN
as any argument, the function returns NaN
.
var y = pmf( NaN, -2, 2 );
// returns NaN
y = pmf( 1.0, NaN, 4 );
// returns NaN
y = pmf( 2.0, 0, NaN );
// returns NaN
If a
or b
is not an integer value, the function returns NaN
.
var y = pmf( 2.0, 1, 5.5 );
// returns NaN
If provided a > b
, the function returns NaN
.
var y = pmf( 2.0, 3, 2 );
// returns NaN
pmf.factory( a, b )
Returns a function
for evaluating the PMF for a discrete uniform distribution with parameters a
(minimum support) and b
(maximum support).
var myPDF = pmf.factory( 6, 7 );
var y = myPDF( 7.0 );
// returns 0.5
y = myPDF( 5.0 );
// returns 0.0
Examples
var randint = require( '@stdlib/random-base-discrete-uniform' );
var pmf = require( '@stdlib/stats-base-dists-discrete-uniform-pmf' );
var randa = randint.factory( 0, 10 );
var randb = randint.factory();
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
a = randa();
x = randb( a, a+randa() );
b = randb( a, a+randa() );
y = pmf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, P(X=x;a,b): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.