@stdlib/stats-base-dists-cauchy-logpdf
v0.2.2
Published
Cauchy distribution logarithm of probability density function (logPDF).
Downloads
1,001
Readme
Logarithm of Probability Density Function
Cauchy distribution logarithm of probability density function (logPDF).
The probability density function (PDF) for a Cauchy random variable is
where x0
is the location parameter and gamma > 0
is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-cauchy-logpdf
Usage
var logpdf = require( '@stdlib/stats-base-dists-cauchy-logpdf' );
logpdf( x, x0, gamma )
Evaluates the natural logarithm of the probability density function (PDF) for a Cauchy distribution with parameters x0
(location parameter) and gamma > 0
(scale parameter).
var y = logpdf( 2.0, 1.0, 1.0 );
// returns ~-1.838
y = logpdf( 4.0, 3.0, 0.1 );
// returns ~-3.457
y = logpdf( 4.0, 3.0, 3.0 );
// returns ~-2.349
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 2.0, NaN, 1.0 );
// returns NaN
y = logpdf( 2.0, 1.0, NaN );
// returns NaN
If provided gamma <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN
logpdf.factory( x0, gamma )
Returns a function
for evaluating the natural logarithm of the PDF of a Cauchy distribution with location parameter x0
and scale parameter gamma
.
var mylogpdf = logpdf.factory( 10.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-1.838
y = mylogpdf( 5.0 );
// returns ~-3.819
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( '@stdlib/stats-base-dists-cauchy-logpdf' );
var gamma;
var x0;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
x0 = ( randu()*10.0 ) - 5.0;
gamma = ( randu()*20.0 ) + EPS;
y = logpdf( x, gamma, x0 );
console.log( 'x: %d, x0: %d, γ: %d, ln(f(x;x0,γ)): %d', x.toFixed(4), x0.toFixed(4), gamma.toFixed(4), y.toFixed(4) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.