@stdlib/stats-base-dists-binomial-logpmf
v0.2.2
Published
Natural logarithm of the probability mass function (PMF) for a binomial distribution.
Downloads
951
Readme
Logarithm of Probability Mass Function
Evaluate the natural logarithm of the probability mass function (PMF) for a binomial distribution.
The probability mass function (PMF) for a binomial random variable is
where n
is the number of trials and 0 <= p <= 1
is the success probability.
Installation
npm install @stdlib/stats-base-dists-binomial-logpmf
Usage
var logpmf = require( '@stdlib/stats-base-dists-binomial-logpmf' );
logpmf( x, n, p )
Evaluates the natural logarithm of the probability mass function (PMF) for a binomial distribution with number of trials n
and success probability p
.
var y = logpmf( 3.0, 20, 0.2 );
// returns ~-1.583
y = logpmf( 21.0, 20, 0.2 );
// returns -Infinity
y = logpmf( 5.0, 10, 0.4 );
// returns ~-1.606
y = logpmf( 0.0, 10, 0.4 );
// returns ~-5.108
If provided NaN
as any argument, the function returns NaN
.
var y = logpmf( NaN, 20, 0.5 );
// returns NaN
y = logpmf( 0.0, NaN, 0.5 );
// returns NaN
y = logpmf( 0.0, 20, NaN );
// returns NaN
If provided a number of trials n
which is not a nonnegative integer, the function returns NaN
.
var y = logpmf( 2.0, 1.5, 0.5 );
// returns NaN
y = logpmf( 2.0, -2.0, 0.5 );
// returns NaN
If provided a success probability p
outside of [0,1]
, the function returns NaN
.
var y = logpmf( 2.0, 20, -1.0 );
// returns NaN
y = logpmf( 2.0, 20, 1.5 );
// returns NaN
logpmf.factory( n, p )
Returns a function for evaluating the probability mass function (PMF) of a binomial distribution with number of trials n
and success probability p
.
var mylogpmf = logpmf.factory( 10, 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-2.144
y = mylogpmf( 5.0 );
// returns ~-1.402
Examples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var logpmf = require( '@stdlib/stats-base-dists-binomial-logpmf' );
var i;
var n;
var p;
var x;
var y;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 20.0 );
n = round( randu() * 100.0 );
p = randu();
y = logpmf( x, n, p );
console.log( 'x: %d, n: %d, p: %d, ln(P(X = x;n,p)): %d', x, n, p.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.