@stdlib/stats-base-dists-beta-logpdf
v0.2.2
Published
Beta distribution logarithm of probability density function (PDF).
Downloads
3,769
Readme
Logarithm of Probability Density Function
Beta distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a beta random variable is
where alpha > 0
is the first shape parameter and beta > 0
is the second shape parameter.
Installation
npm install @stdlib/stats-base-dists-beta-logpdf
Usage
var logpdf = require( '@stdlib/stats-base-dists-beta-logpdf' );
logpdf( x, alpha, beta )
Evaluates the natural logarithm of the probability density function (PDF) for a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var y = logpdf( 0.5, 0.5, 1.0 );
// returns ~-0.347
y = logpdf( 0.1, 1.0, 1.0 );
// returns 0.0
y = logpdf( 0.8, 4.0, 2.0 );
// returns ~0.717
If provided an input value x
outside the support [0,1]
, the function returns -Infinity
.
var y = logpdf( -0.1, 1.0, 1.0 );
// returns -Infinity
y = logpdf( 1.1, 1.0, 1.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 1.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
var y = logpdf( 0.5, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.5, -1.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = logpdf( 0.5, 1.0, 0.0 );
// returns NaN
y = logpdf( 0.5, 1.0, -1.0 );
// returns NaN
logpdf.factory( alpha, beta )
Returns a function
for evaluating the natural logarithm of the PDF for a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var mylogPDF = logpdf.factory( 0.5, 0.5 );
var y = mylogPDF( 0.8 );
// returns ~-0.228
y = mylogPDF( 0.3 );
// returns ~-0.364
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( '@stdlib/stats-base-dists-beta-logpdf' );
var alpha;
var beta;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu();
alpha = ( randu()*5.0 ) + EPS;
beta = ( randu()*5.0 ) + EPS;
y = logpdf( x, alpha, beta );
console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.