@stdlib/stats-base-dists-arcsine-quantile
v0.2.2
Published
Arcsine distribution quantile function.
Downloads
347
Readme
Quantile Function
Arcsine distribution quantile function.
The quantile function for an arcsine random variable is
for 0 <= p <= 1
, where a
is the minimum support and b
is the maximum support. The parameters must satisfy a < b
.
Installation
npm install @stdlib/stats-base-dists-arcsine-quantile
Usage
var quantile = require( '@stdlib/stats-base-dists-arcsine-quantile' );
quantile( p, a, b )
Evaluates the quantile function for an arcsine distribution with parameters a
(minimum support) and b
(maximum support).
var y = quantile( 0.8, 0.0, 1.0 );
// returns ~0.905
y = quantile( 0.5, 0.0, 10.0 );
// returns ~5.0
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( 1.9, 0.0, 1.0 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 0.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 0.0, NaN );
// returns NaN
If provided a >= b
, the function returns NaN
.
var y = quantile( 0.4, 2.0, 1.0 );
// returns NaN
quantile.factory( a, b )
Returns a function for evaluating the quantile function of an arcsine distribution with parameters a
(minimum support) and b
(maximum support).
var myquantile = quantile.factory( 0.0, 4.0 );
var y = myquantile( 0.8 );
// returns ~3.618
Examples
var randu = require( '@stdlib/random-base-randu' );
var quantile = require( '@stdlib/stats-base-dists-arcsine-quantile' );
var a;
var b;
var p;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
p = randu();
a = ( randu()*20.0 ) - 20.0;
b = a + ( randu()*40.0 );
y = quantile( p, a, b );
console.log( 'p: %d, a: %d, b: %d, Q(p;a,b): %d', p.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.