npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/stats-base

v0.3.2

Published

Base (i.e., lower-level) statistical functions.

Downloads

185

Readme

Base Statistics

NPM version Build Status Coverage Status

Base (i.e., lower-level) statistical functions.

Installation

npm install @stdlib/stats-base

Usage

var stats = require( '@stdlib/stats-base' );

stats

Namespace containing "base" (i.e., lower-level) statistical functions.

var ns = stats;
// returns {...}

The namespace contains the following sub-namespaces:

  • [dists][@stdlib/stats/base/dists]: base (i.e., lower-level) probability distribution modules.

The namespace contains the following statistical functions:

  • [cumax( N, x, strideX, y, strideY )][@stdlib/stats/base/cumax]: calculate the cumulative maximum of a strided array.
  • [cumaxabs( N, x, strideX, y, strideY )][@stdlib/stats/base/cumaxabs]: calculate the cumulative maximum absolute value of a strided array.
  • [cumin( N, x, strideX, y, strideY )][@stdlib/stats/base/cumin]: calculate the cumulative minimum of a strided array.
  • [cuminabs( N, x, strideX, y, strideY )][@stdlib/stats/base/cuminabs]: calculate the cumulative minimum absolute value of a strided array.
  • [dcumax( N, x, strideX, y, strideY )][@stdlib/stats/base/dcumax]: calculate the cumulative maximum of double-precision floating-point strided array elements.
  • [dcumaxabs( N, x, strideX, y, strideY )][@stdlib/stats/base/dcumaxabs]: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.
  • [dcumin( N, x, strideX, y, strideY )][@stdlib/stats/base/dcumin]: calculate the cumulative minimum of double-precision floating-point strided array elements.
  • [dcuminabs( N, x, strideX, y, strideY )][@stdlib/stats/base/dcuminabs]: calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.
  • [dmax( N, x, stride )][@stdlib/stats/base/dmax]: calculate the maximum value of a double-precision floating-point strided array.
  • [dmaxabs( N, x, stride )][@stdlib/stats/base/dmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array.
  • [dmaxabssorted( N, x, stride )][@stdlib/stats/base/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array.
  • [dmaxsorted( N, x, stride )][@stdlib/stats/base/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array.
  • [dmean( N, x, stride )][@stdlib/stats/base/dmean]: calculate the arithmetic mean of a double-precision floating-point strided array.
  • [dmeankbn( N, x, stride )][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
  • [dmeankbn2( N, x, stride )][@stdlib/stats/base/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
  • [dmeanli( N, x, stride )][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
  • [dmeanlipw( N, x, stride )][@stdlib/stats/base/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
  • [dmeanors( N, x, stride )][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
  • [dmeanpn( N, x, stride )][@stdlib/stats/base/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.
  • [dmeanpw( N, x, stride )][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
  • [dmeanstdev( N, correction, x, strideX, out, strideOut )][@stdlib/stats/base/dmeanstdev]: calculate the mean and standard deviation of a double-precision floating-point strided array.
  • [dmeanstdevpn( N, correction, x, strideX, out, strideOut )][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
  • [dmeanvar( N, correction, x, strideX, out, strideOut )][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array.
  • [dmeanvarpn( N, correction, x, strideX, out, strideOut )][@stdlib/stats/base/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
  • [dmeanwd( N, x, stride )][@stdlib/stats/base/dmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.
  • [dmediansorted( N, x, stride )][@stdlib/stats/base/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array.
  • [dmidrange( N, x, stride )][@stdlib/stats/base/dmidrange]: calculate the mid-range of a double-precision floating-point strided array.
  • [dmin( N, x, stride )][@stdlib/stats/base/dmin]: calculate the minimum value of a double-precision floating-point strided array.
  • [dminabs( N, x, stride )][@stdlib/stats/base/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array.
  • [dminsorted( N, x, stride )][@stdlib/stats/base/dminsorted]: calculate the minimum value of a sorted double-precision floating-point strided array.
  • [dmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask.
  • [dmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask.
  • [dmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dmskrange]: calculate the range of a double-precision floating-point strided array according to a mask.
  • [dnanmax( N, x, stride )][@stdlib/stats/base/dnanmax]: calculate the maximum value of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanmaxabs( N, x, stride )][@stdlib/stats/base/dnanmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanmean( N, x, stride )][@stdlib/stats/base/dnanmean]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanmeanors( N, x, stride )][@stdlib/stats/base/dnanmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation.
  • [dnanmeanpn( N, x, stride )][@stdlib/stats/base/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
  • [dnanmeanpw( N, x, stride )][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using pairwise summation.
  • [dnanmeanwd( N, x, stride )][@stdlib/stats/base/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring NaN values.
  • [dnanmin( N, x, stride )][@stdlib/stats/base/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanminabs( N, x, stride )][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring NaN values.
  • [dnanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring NaN values.
  • [dnanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring NaN values.
  • [dnanrange( N, x, stride )][@stdlib/stats/base/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoring NaN values.
  • [dnanstdev( N, correction, x, stride )][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values.
  • [dnanstdevch( N, correction, x, stride )][@stdlib/stats/base/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [dnanstdevpn( N, correction, x, stride )][@stdlib/stats/base/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using a two-pass algorithm.
  • [dnanstdevtk( N, correction, x, stride )][@stdlib/stats/base/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [dnanstdevwd( N, correction, x, stride )][@stdlib/stats/base/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using Welford's algorithm.
  • [dnanstdevyc( N, correction, x, stride )][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [dnanvariance( N, correction, x, stride )][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring NaN values.
  • [dnanvariancech( N, correction, x, stride )][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [dnanvariancepn( N, correction, x, stride )][@stdlib/stats/base/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a two-pass algorithm.
  • [dnanvariancetk( N, correction, x, stride )][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [dnanvariancewd( N, correction, x, stride )][@stdlib/stats/base/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring NaN values and using Welford's algorithm.
  • [dnanvarianceyc( N, correction, x, stride )][@stdlib/stats/base/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [drange( N, x, stride )][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array.
  • [dsem( N, correction, x, stride )][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
  • [dsemch( N, correction, x, stride )][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
  • [dsempn( N, correction, x, stride )][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
  • [dsemtk( N, correction, x, stride )][@stdlib/stats/base/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
  • [dsemwd( N, correction, x, stride )][@stdlib/stats/base/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.
  • [dsemyc( N, correction, x, stride )][@stdlib/stats/base/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [dsmean( N, x, stride )][@stdlib/stats/base/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
  • [dsmeanors( N, x, stride )][@stdlib/stats/base/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.
  • [dsmeanpn( N, x, stride )][@stdlib/stats/base/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
  • [dsmeanpw( N, x, stride )][@stdlib/stats/base/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
  • [dsmeanwd( N, x, stride )][@stdlib/stats/base/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
  • [dsnanmean( N, x, stride )][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using extended accumulation, and returning an extended precision result.
  • [dsnanmeanors( N, x, stride )][@stdlib/stats/base/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
  • [dsnanmeanpn( N, x, stride )][@stdlib/stats/base/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
  • [dsnanmeanwd( N, x, stride )][@stdlib/stats/base/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
  • [dstdev( N, correction, x, stride )][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
  • [dstdevch( N, correction, x, stride )][@stdlib/stats/base/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.
  • [dstdevpn( N, correction, x, stride )][@stdlib/stats/base/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
  • [dstdevtk( N, correction, x, stride )][@stdlib/stats/base/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.
  • [dstdevwd( N, correction, x, stride )][@stdlib/stats/base/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.
  • [dstdevyc( N, correction, x, stride )][@stdlib/stats/base/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [dsvariance( N, correction, x, stride )][@stdlib/stats/base/dsvariance]: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
  • [dsvariancepn( N, correction, x, stride )][@stdlib/stats/base/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
  • [dvariance( N, correction, x, stride )][@stdlib/stats/base/dvariance]: calculate the variance of a double-precision floating-point strided array.
  • [dvariancech( N, correction, x, stride )][@stdlib/stats/base/dvariancech]: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.
  • [dvariancepn( N, correction, x, stride )][@stdlib/stats/base/dvariancepn]: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.
  • [dvariancetk( N, correction, x, stride )][@stdlib/stats/base/dvariancetk]: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.
  • [dvariancewd( N, correction, x, stride )][@stdlib/stats/base/dvariancewd]: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.
  • [dvarianceyc( N, correction, x, stride )][@stdlib/stats/base/dvarianceyc]: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [dvarm( N, mean, correction, x, stride )][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
  • [dvarmpn( N, mean, correction, x, stride )][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
  • [dvarmtk( N, mean, correction, x, stride )][@stdlib/stats/base/dvarmtk]: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.
  • [maxBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/max-by]: calculate the maximum value of a strided array via a callback function.
  • [max( N, x, stride )][@stdlib/stats/base/max]: calculate the maximum value of a strided array.
  • [maxabs( N, x, stride )][@stdlib/stats/base/maxabs]: calculate the maximum absolute value of a strided array.
  • [maxsorted( N, x, stride )][@stdlib/stats/base/maxsorted]: calculate the maximum value of a sorted strided array.
  • [mean( N, x, stride )][@stdlib/stats/base/mean]: calculate the arithmetic mean of a strided array.
  • [meankbn( N, x, stride )][@stdlib/stats/base/meankbn]: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.
  • [meankbn2( N, x, stride )][@stdlib/stats/base/meankbn2]: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.
  • [meanors( N, x, stride )][@stdlib/stats/base/meanors]: calculate the arithmetic mean of a strided array using ordinary recursive summation.
  • [meanpn( N, x, stride )][@stdlib/stats/base/meanpn]: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.
  • [meanpw( N, x, stride )][@stdlib/stats/base/meanpw]: calculate the arithmetic mean of a strided array using pairwise summation.
  • [meanwd( N, x, stride )][@stdlib/stats/base/meanwd]: calculate the arithmetic mean of a strided array using Welford's algorithm.
  • [mediansorted( N, x, stride )][@stdlib/stats/base/mediansorted]: calculate the median value of a sorted strided array.
  • [minBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/min-by]: calculate the minimum value of a strided array via a callback function.
  • [min( N, x, stride )][@stdlib/stats/base/min]: calculate the minimum value of a strided array.
  • [minabs( N, x, stride )][@stdlib/stats/base/minabs]: calculate the minimum absolute value of a strided array.
  • [minsorted( N, x, stride )][@stdlib/stats/base/minsorted]: calculate the minimum value of a sorted strided array.
  • [mskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/mskmax]: calculate the maximum value of a strided array according to a mask.
  • [mskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/mskmin]: calculate the minimum value of a strided array according to a mask.
  • [mskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/mskrange]: calculate the range of a strided array according to a mask.
  • [nanmaxBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/nanmax-by]: calculate the maximum value of a strided array via a callback function, ignoring NaN values.
  • [nanmax( N, x, stride )][@stdlib/stats/base/nanmax]: calculate the maximum value of a strided array, ignoring NaN values.
  • [nanmaxabs( N, x, stride )][@stdlib/stats/base/nanmaxabs]: calculate the maximum absolute value of a strided array, ignoring NaN values.
  • [nanmean( N, x, stride )][@stdlib/stats/base/nanmean]: calculate the arithmetic mean of a strided array, ignoring NaN values.
  • [nanmeanors( N, x, stride )][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring NaN values and using ordinary recursive summation.
  • [nanmeanpn( N, x, stride )][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring NaN values and using a two-pass error correction algorithm.
  • [nanmeanwd( N, x, stride )][@stdlib/stats/base/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoring NaN values and using Welford's algorithm.
  • [nanminBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoring NaN values.
  • [nanmin( N, x, stride )][@stdlib/stats/base/nanmin]: calculate the minimum value of a strided array, ignoring NaN values.
  • [nanminabs( N, x, stride )][@stdlib/stats/base/nanminabs]: calculate the minimum absolute value of a strided array, ignoring NaN values.
  • [nanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/nanmskmax]: calculate the maximum value of a strided array according to a mask, ignoring NaN values.
  • [nanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/nanmskmin]: calculate the minimum value of a strided array according to a mask, ignoring NaN values.
  • [nanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/nanmskrange]: calculate the range of a strided array according to a mask, ignoring NaN values.
  • [nanrangeBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/nanrange-by]: calculate the range of a strided array via a callback function, ignoring NaN values.
  • [nanrange( N, x, stride )][@stdlib/stats/base/nanrange]: calculate the range of a strided array, ignoring NaN values.
  • [nanstdev( N, correction, x, stride )][@stdlib/stats/base/nanstdev]: calculate the standard deviation of a strided array ignoring NaN values.
  • [nanstdevch( N, correction, x, stride )][@stdlib/stats/base/nanstdevch]: calculate the standard deviation of a strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [nanstdevpn( N, correction, x, stride )][@stdlib/stats/base/nanstdevpn]: calculate the standard deviation of a strided array ignoring NaN values and using a two-pass algorithm.
  • [nanstdevtk( N, correction, x, stride )][@stdlib/stats/base/nanstdevtk]: calculate the standard deviation of a strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [nanstdevwd( N, correction, x, stride )][@stdlib/stats/base/nanstdevwd]: calculate the standard deviation of a strided array ignoring NaN values and using Welford's algorithm.
  • [nanstdevyc( N, correction, x, stride )][@stdlib/stats/base/nanstdevyc]: calculate the standard deviation of a strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [nanvariance( N, correction, x, stride )][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring NaN values.
  • [nanvariancech( N, correction, x, stride )][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [nanvariancepn( N, correction, x, stride )][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring NaN values and using a two-pass algorithm.
  • [nanvariancetk( N, correction, x, stride )][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [nanvariancewd( N, correction, x, stride )][@stdlib/stats/base/nanvariancewd]: calculate the variance of a strided array ignoring NaN values and using Welford's algorithm.
  • [nanvarianceyc( N, correction, x, stride )][@stdlib/stats/base/nanvarianceyc]: calculate the variance of a strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [rangeBy( N, x, stride, clbk[, thisArg] )][@stdlib/stats/base/range-by]: calculate the range of a strided array via a callback function.
  • [range( N, x, stride )][@stdlib/stats/base/range]: calculate the range of a strided array.
  • [scumax( N, x, strideX, y, strideY )][@stdlib/stats/base/scumax]: calculate the cumulative maximum of single-precision floating-point strided array elements.
  • [scumaxabs( N, x, strideX, y, strideY )][@stdlib/stats/base/scumaxabs]: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.
  • [scumin( N, x, strideX, y, strideY )][@stdlib/stats/base/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements.
  • [scuminabs( N, x, strideX, y, strideY )][@stdlib/stats/base/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.
  • [sdsmean( N, x, stride )][@stdlib/stats/base/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.
  • [sdsmeanors( N, x, stride )][@stdlib/stats/base/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
  • [sdsnanmean( N, x, stride )][@stdlib/stats/base/sdsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using extended accumulation.
  • [sdsnanmeanors( N, x, stride )][@stdlib/stats/base/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation with extended accumulation.
  • [smax( N, x, stride )][@stdlib/stats/base/smax]: calculate the maximum value of a single-precision floating-point strided array.
  • [smaxabs( N, x, stride )][@stdlib/stats/base/smaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array.
  • [smaxabssorted( N, x, stride )][@stdlib/stats/base/smaxabssorted]: calculate the maximum absolute value of a sorted single-precision floating-point strided array.
  • [smaxsorted( N, x, stride )][@stdlib/stats/base/smaxsorted]: calculate the maximum value of a sorted single-precision floating-point strided array.
  • [smean( N, x, stride )][@stdlib/stats/base/smean]: calculate the arithmetic mean of a single-precision floating-point strided array.
  • [smeankbn( N, x, stride )][@stdlib/stats/base/smeankbn]: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.
  • [smeankbn2( N, x, stride )][@stdlib/stats/base/smeankbn2]: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
  • [smeanli( N, x, stride )][@stdlib/stats/base/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.
  • [smeanlipw( N, x, stride )][@stdlib/stats/base/smeanlipw]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
  • [smeanors( N, x, stride )][@stdlib/stats/base/smeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.
  • [smeanpn( N, x, stride )][@stdlib/stats/base/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
  • [smeanpw( N, x, stride )][@stdlib/stats/base/smeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.
  • [smeanwd( N, x, stride )][@stdlib/stats/base/smeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
  • [smediansorted( N, x, stride )][@stdlib/stats/base/smediansorted]: calculate the median value of a sorted single-precision floating-point strided array.
  • [smidrange( N, x, stride )][@stdlib/stats/base/smidrange]: calculate the mid-range of a single-precision floating-point strided array.
  • [smin( N, x, stride )][@stdlib/stats/base/smin]: calculate the minimum value of a single-precision floating-point strided array.
  • [sminabs( N, x, stride )][@stdlib/stats/base/sminabs]: calculate the minimum absolute value of a single-precision floating-point strided array.
  • [sminsorted( N, x, stride )][@stdlib/stats/base/sminsorted]: calculate the minimum value of a sorted single-precision floating-point strided array.
  • [smskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/smskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask.
  • [smskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/smskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask.
  • [smskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/smskrange]: calculate the range of a single-precision floating-point strided array according to a mask.
  • [snanmax( N, x, stride )][@stdlib/stats/base/snanmax]: calculate the maximum value of a single-precision floating-point strided array, ignoring NaN values.
  • [snanmaxabs( N, x, stride )][@stdlib/stats/base/snanmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array, ignoring NaN values.
  • [snanmean( N, x, stride )][@stdlib/stats/base/snanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values.
  • [snanmeanors( N, x, stride )][@stdlib/stats/base/snanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation.
  • [snanmeanpn( N, x, stride )][@stdlib/stats/base/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
  • [snanmeanwd( N, x, stride )][@stdlib/stats/base/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using Welford's algorithm.
  • [snanmin( N, x, stride )][@stdlib/stats/base/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoring NaN values.
  • [snanminabs( N, x, stride )][@stdlib/stats/base/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoring NaN values.
  • [snanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/base/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring NaN values.
  • [snanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/base/snanmskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring NaN values.
  • [snanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/base/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoring NaN values.
  • [snanrange( N, x, stride )][@stdlib/stats/base/snanrange]: calculate the range of a single-precision floating-point strided array, ignoring NaN values.
  • [snanstdev( N, correction, x, stride )][@stdlib/stats/base/snanstdev]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values.
  • [snanstdevch( N, correction, x, stride )][@stdlib/stats/base/snanstdevch]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [snanstdevpn( N, correction, x, stride )][@stdlib/stats/base/snanstdevpn]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a two-pass algorithm.
  • [snanstdevtk( N, correction, x, stride )][@stdlib/stats/base/snanstdevtk]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [snanstdevwd( N, correction, x, stride )][@stdlib/stats/base/snanstdevwd]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using Welford's algorithm.
  • [snanstdevyc( N, correction, x, stride )][@stdlib/stats/base/snanstdevyc]: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [snanvariance( N, correction, x, stride )][@stdlib/stats/base/snanvariance]: calculate the variance of a single-precision floating-point strided array ignoring NaN values.
  • [snanvariancech( N, correction, x, stride )][@stdlib/stats/base/snanvariancech]: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • [snanvariancepn( N, correction, x, stride )][@stdlib/stats/base/snanvariancepn]: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a two-pass algorithm.
  • [snanvariancetk( N, correction, x, stride )][@stdlib/stats/base/snanvariancetk]: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass textbook algorithm.
  • [snanvariancewd( N, correction, x, stride )][@stdlib/stats/base/snanvariancewd]: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using Welford's algorithm.
  • [snanvarianceyc( N, correction, x, stride )][@stdlib/stats/base/snanvarianceyc]: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.
  • [srange( N, x, stride )][@stdlib/stats/base/srange]: calculate the range of a single-precision floating-point strided array.
  • [sstdev( N, correction, x, stride )][@stdlib/stats/base/sstdev]: calculate the standard deviation of a single-precision floating-point strided array.
  • [sstdevch( N, correction, x, stride )][@stdlib/stats/base/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.
  • [sstdevpn( N, correction, x, stride )][@stdlib/stats/base/sstdevpn]: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.
  • [sstdevtk( N, correction, x, stride )][@stdlib/stats/base/sstdevtk]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.
  • [sstdevwd( N, correction, x, stride )][@stdlib/stats/base/sstdevwd]: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.
  • [sstdevyc( N, correction, x, stride )][@stdlib/stats/base/sstdevyc]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [stdev( N, correction, x, stride )][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array.
  • [stdevch( N, correction, x, stride )][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.
  • [stdevpn( N, correction, x, stride )][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm.
  • [stdevtk( N, correction, x, stride )][@stdlib/stats/base/stdevtk]: calculate the standard deviation of a strided array using a one-pass textbook algorithm.
  • [stdevwd( N, correction, x, stride )][@stdlib/stats/base/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm.
  • [stdevyc( N, correction, x, stride )][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [svariance( N, correction, x, stride )][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
  • [svariancech( N, correction, x, stride )][@stdlib/stats/base/svariancech]: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.
  • [svariancepn( N, correction, x, stride )][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
  • [svariancetk( N, correction, x, stride )][@stdlib/stats/base/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
  • [svariancewd( N, correction, x, stride )][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
  • [svarianceyc( N, correction, x, stride )][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
  • [variance( N, correction, x, stride )][@stdlib/stats/base/variance]: calculate the variance of a strided array.
  • [variancech( N, correction, x, stride )][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm.
  • [variancepn( N, correction, x, stride )][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm.
  • [variancetk( N, correction, x, stride )][@stdlib/stats/base/variancetk]: calculate the variance of a strided array using a one-pass textbook algorithm.
  • [variancewd( N, correction, x, stride )][@stdlib/stats/base/variancewd]: calculate the variance of a strided array using Welford's algorithm.
  • [varianceyc( N, correction, x, stride )][@stdlib/stats/base/varianceyc]: calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.

Examples

var objectKeys = require( '@stdlib/utils-keys' );
var ns = require( '@stdlib/stats-base' );

console.log( objectKeys( ns ) );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See [LICENSE][stdlib-license].

Copyright

Copyright © 2016-2024. The Stdlib Authors.