@stdlib/stats
v0.3.3
Published
Standard library statistical functions.
Downloads
69,380
Readme
Stats
Statistical functions.
Installation
npm install @stdlib/stats
Usage
var statistics = require( '@stdlib/stats' );
statistics
Namespace containing statistical functions.
var stats = statistics;
// returns {...}
The namespace exposes the following statistical tests:
anova1( x, factor[, opts] )
: perform a one-way analysis of variance.bartlettTest( a[,b,...,k][, opts] )
: compute Bartlett’s test for equal variances.binomialTest( x[, n][, opts] )
: exact test for the success probability in a Bernoulli experiment.chi2gof( x, y[, ...args][, options] )
: perform a chi-square goodness-of-fit test.chi2test( x[, options] )
: perform a chi-square independence test.flignerTest( a[,b,...,k][, opts] )
: compute the Fligner-Killeen test for equal variances.kruskalTest( a[,b,...,k][, opts] )
: compute the Kruskal-Wallis test for equal medians.kstest( x, y[, ...params][, opts] )
: one-sample Kolmogorov-Smirnov goodness-of-fit test.leveneTest( x[, y, ..., z][, opts] )
: compute Levene's test for equal variances.pcorrtest( x, y[, opts] )
: compute a Pearson product-moment correlation test between paired samples.ttest( x[, y][, opts] )
: one-sample and paired Student's t-Test.ttest2( x, y[, opts] )
: two-sample Student's t-Test.vartest( x, y[, opts] )
: two-sample F-test for equal variances.wilcoxon( x[, y][, opts] )
: one-sample and paired Wilcoxon signed rank test.ztest( x, sigma[, opts] )
: one-sample z-Test.ztest2( x, y, sigmax, sigmay[, opts] )
: two-sample z-Test.
In addition, it contains an assortment of functions for computing statistics incrementally as part of the incr
sub-namespace and functions for computing statistics over iterators in the iterators
namespace.
The base
sub-namespace contains functions to calculate statistics alongside a dists
namespace containing functions related to a wide assortment of probability distributions.
base
: base (i.e., lower-level) statistical functions.
Other statistical functions included are:
kde2d()
: two-dimensional kernel density estimation.lowess( x, y[, opts] )
: locally-weighted polynomial regression via the LOWESS algorithm.padjust( pvals, method[, comparisons] )
: adjust supplied p-values for multiple comparisons.ranks( arr[, opts] )
: compute ranks for values of an array-like object.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var statistics = require( '@stdlib/stats' );
console.log( objectKeys( statistics ) );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.