npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/random-strided-rayleigh

v0.1.1

Published

Fill a strided array with pseudorandom numbers drawn from a Rayleigh distribution.

Downloads

1

Readme

Rayleigh Random Numbers

NPM version Build Status Coverage Status

Fill a strided array with pseudorandom numbers drawn from a Rayleigh distribution.

Installation

npm install @stdlib/random-strided-rayleigh

Usage

var rayleigh = require( '@stdlib/random-strided-rayleigh' );

rayleigh( N, sigma, ss, out, so )

Fills a strided array with pseudorandom numbers drawn from a Rayleigh distribution.

var Float64Array = require( '@stdlib/array-float64' );

// Create an array:
var out = new Float64Array( 10 );

// Fill the array with pseudorandom numbers:
rayleigh( out.length, [ 2.0 ], 0, out, 1 );

The function has the following parameters:

  • N: number of indexed elements.
  • sigma: rate parameter.
  • ss: index increment for sigma.
  • out: output array.
  • so: index increment for out.

The N and stride parameters determine which strided array elements are accessed at runtime. For example, to access every other value in out,

var out = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

rayleigh( 3, [ 2.0 ], 0, out, 2 );

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial array:
var sigma0 = new Float64Array( [ 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 ] );

// Create offset view:
var sigma1 = new Float64Array( sigma0.buffer, sigma0.BYTES_PER_ELEMENT*3 ); // start at 4th element

// Create an output array:
var out = new Float64Array( 3 );

// Fill the output array:
rayleigh( out.length, sigma1, -1, out, 1 );

rayleigh.ndarray( N, sigma, ss, os, out, so, oo )

Fills a strided array with pseudorandom numbers drawn from a Rayleigh distribution using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

// Create an array:
var out = new Float64Array( 10 );

// Fill the array with pseudorandom numbers:
rayleigh.ndarray( out.length, [ 2.0 ], 0, 0, out, 1, 0 );

The function has the following additional parameters:

  • os: starting index for sigma.
  • oo: starting index for out.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to access every other value in out starting from the second value,

var out = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

rayleigh.ndarray( 3, [ 2.0 ], 0, 0, out, 2, 1 );

rayleigh.factory( [options] )

Returns a function for filling strided arrays with pseudorandom numbers drawn from a Rayleigh distribution.

var Float64Array = require( '@stdlib/array-float64' );

var random = rayleigh.factory();
// returns <Function>

// Create an array:
var out = new Float64Array( 10 );

// Fill the array with pseudorandom numbers:
random( out.length, [ 2.0 ], 0, out, 1 );

The function accepts the following options:

  • prng: pseudorandom number generator for generating uniformly distributed pseudorandom numbers on the interval [0,1). If provided, the function ignores both the state and seed options. In order to seed the underlying pseudorandom number generator, one must seed the provided prng (assuming the provided prng is seedable).
  • seed: pseudorandom number generator seed.
  • state: a Uint32Array containing pseudorandom number generator state. If provided, the function ignores the seed option.
  • copy: boolean indicating whether to copy a provided pseudorandom number generator state. Setting this option to false allows sharing state between two or more pseudorandom number generators. Setting this option to true ensures that an underlying generator has exclusive control over its internal state. Default: true.

To use a custom PRNG as the underlying source of uniformly distributed pseudorandom numbers, set the prng option.

var Float64Array = require( '@stdlib/array-float64' );
var minstd = require( '@stdlib/random-base-minstd' );

var opts = {
    'prng': minstd.normalized
};
var random = rayleigh.factory( opts );

var out = new Float64Array( 10 );
random( out.length, [ 2.0 ], 0, out, 1 );

To seed the underlying pseudorandom number generator, set the seed option.

var Float64Array = require( '@stdlib/array-float64' );

var opts = {
    'seed': 12345
};
var random = rayleigh.factory( opts );

var out = new Float64Array( 10 );
random( out.length, [ 2.0 ], 0, out, 1 );

random.PRNG

The underlying pseudorandom number generator.

var prng = rayleigh.PRNG;
// returns <Function>

rayleigh.seed

The value used to seed the underlying pseudorandom number generator.

var seed = rayleigh.seed;
// returns <Uint32Array>

If the factory method is provided a PRNG for uniformly distributed numbers, the associated property value on the returned function is null.

var minstd = require( '@stdlib/random-base-minstd-shuffle' ).normalized;

var random = rayleigh.factory({
    'prng': minstd
});
// returns <Function>

var seed = random.seed;
// returns null

rayleigh.seedLength

Length of underlying pseudorandom number generator seed.

var len = rayleigh.seedLength;
// returns <number>

If the factory method is provided a PRNG for uniformly distributed numbers, the associated property value on the returned function is null.

var minstd = require( '@stdlib/random-base-minstd-shuffle' ).normalized;

var random = rayleigh.factory({
    'prng': minstd
});
// returns <Function>

var len = random.seedLength;
// returns null

rayleigh.state

Writable property for getting and setting the underlying pseudorandom number generator state.

var state = rayleigh.state;
// returns <Uint32Array>

If the factory method is provided a PRNG for uniformly distributed numbers, the associated property value on the returned function is null.

var minstd = require( '@stdlib/random-base-minstd-shuffle' ).normalized;

var random = rayleigh.factory({
    'prng': minstd
});
// returns <Function>

var state = random.state;
// returns null

rayleigh.stateLength

Length of underlying pseudorandom number generator state.

var len = rayleigh.stateLength;
// returns <number>

If the factory method is provided a PRNG for uniformly distributed numbers, the associated property value on the returned function is null.

var minstd = require( '@stdlib/random-base-minstd-shuffle' ).normalized;

var random = rayleigh.factory({
    'prng': minstd
});
// returns <Function>

var len = random.stateLength;
// returns null

rayleigh.byteLength

Size (in bytes) of underlying pseudorandom number generator state.

var sz = rayleigh.byteLength;
// returns <number>

If the factory method is provided a PRNG for uniformly distributed numbers, the associated property value on the returned function is null.

var minstd = require( '@stdlib/random-base-minstd-shuffle' ).normalized;

var random = rayleigh.factory({
    'prng': minstd
});
// returns <Function>

var sz = random.byteLength;
// returns null

Notes

  • If N <= 0, both rayleigh and rayleigh.ndarray leave the output array unchanged.
  • Both rayleigh and rayleigh.ndarray support array-like objects having getter and setter accessors for array element access.

Examples

var zeros = require( '@stdlib/array-zeros' );
var zeroTo = require( '@stdlib/array-zero-to' );
var logEach = require( '@stdlib/console-log-each' );
var rayleigh = require( '@stdlib/random-strided-rayleigh' );

// Specify a PRNG seed:
var opts = {
    'seed': 1234
};

// Create a seeded PRNG:
var rand1 = rayleigh.factory( opts );

// Create an array:
var x1 = zeros( 10, 'float64' );

// Fill the array with pseudorandom numbers:
rand1( x1.length, [ 2.0 ], 0, x1, 1 );

// Create another function for filling strided arrays:
var rand2 = rayleigh.factory( opts );
// returns <Function>

// Create a second array:
var x2 = zeros( 10, 'generic' );

// Fill the array with the same pseudorandom numbers:
rand2( x2.length, [ 2.0 ], 0, x2, 1 );

// Create a list of indices:
var idx = zeroTo( x1.length, 'generic' );

// Print the array contents:
logEach( 'x1[%d] = %.2f; x2[%d] = %.2f', idx, x1, idx, x2 );

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.