npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/ndarray-slice-assign

v0.2.1

Published

Assign element values from a broadcasted input ndarray to corresponding elements in an output ndarray view.

Downloads

6

Readme

sliceAssign

NPM version Build Status Coverage Status

Assign element values from a broadcasted input ndarray to corresponding elements in an output ndarray view.

Installation

npm install @stdlib/ndarray-slice-assign

Usage

var sliceAssign = require( '@stdlib/ndarray-slice-assign' );

sliceAssign( x, y, ...s[, options] )

Assigns element values from a broadcasted input ndarray to corresponding elements in an output ndarray view.

var Slice = require( '@stdlib/slice-ctor' );
var MultiSlice = require( '@stdlib/slice-multi' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );

// Define an input array:
var buffer = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ];
var shape = [ 3, 2 ];
var strides = [ 2, 1 ];
var offset = 0;

var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>

var sh = x.shape;
// returns [ 3, 2 ]

var arr = ndarray2array( x );
// returns [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]

// Define an output array:
var y = ndzeros( [ 2, 3, 2 ], {
    'dtype': x.dtype
});

// Create a slice:
var s0 = null;
var s1 = new Slice( null, null, -1 );
var s2 = new Slice( null, null, -1 );
var s = new MultiSlice( s0, s1, s2 );
// returns <MultiSlice>

// Perform assignment:
var out = sliceAssign( x, y, s );
// returns <ndarray>

var bool = ( out === y );
// returns true

arr = ndarray2array( y );
// returns [ [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ], [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ] ]

The function accepts the following arguments:

  • x: input ndarray.
  • y: output ndarray.
  • s: a MultiSlice instance, an array of slice arguments, or slice arguments as separate arguments.
  • options: function options.

The function supports three (mutually exclusive) means for providing slice arguments:

  1. providing a single MultiSlice instance.
  2. providing a single array of slice arguments.
  3. providing slice arguments as separate arguments.

The following example demonstrates each invocation style achieving equivalent results.

var Slice = require( '@stdlib/slice-ctor' );
var MultiSlice = require( '@stdlib/slice-multi' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );

// 1. Using a MultiSlice:
var x = scalar2ndarray( 10.0 );
var y = ndzeros( [ 2, 3 ] );

var s0 = 0;
var s1 = new Slice( 1, null, 1 );
var s = new MultiSlice( s0, s1 );
// returns <MultiSlice>

var out = sliceAssign( x, y, s );
// returns <ndarray>

var arr = ndarray2array( out );
// returns [ [ 0.0, 10.0, 10.0 ], [ 0.0, 0.0, 0.0 ] ]

// 2. Using an array of slice arguments:
x = scalar2ndarray( 10.0 );
y = ndzeros( [ 2, 3 ] );

out = sliceAssign( x, y, [ s0, s1 ] );
// returns <ndarray>

arr = ndarray2array( out );
// returns [ [ 0.0, 10.0, 10.0 ], [ 0.0, 0.0, 0.0 ] ]

// 3. Providing separate arguments:
x = scalar2ndarray( 10.0 );
y = ndzeros( [ 2, 3 ] );

out = sliceAssign( x, y, s0, s1 );
// returns <ndarray>

arr = ndarray2array( out );
// returns [ [ 0.0, 10.0, 10.0 ], [ 0.0, 0.0, 0.0 ] ]

The function supports the following options:

  • strict: boolean indicating whether to enforce strict bounds checking.

By default, the function throws an error when provided a slice which exceeds array bounds. To ignore slice indices exceeding array bounds, set the strict option to false.

var Slice = require( '@stdlib/slice-ctor' );
var MultiSlice = require( '@stdlib/slice-multi' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );

// Define an input array:
var x = scalar2ndarray( 10.0 );

// Define an output array:
var y = ndzeros( [ 3, 2 ], {
    'dtype': x.dtype
});

// Create a slice:
var s0 = new Slice( 1, null, 1 );
var s1 = new Slice( 10, 20, 1 );
var s = new MultiSlice( s0, s1 );
// returns <MultiSlice>

// Perform assignment:
var out = sliceAssign( x, y, s, {
    'strict': false
});
// returns <ndarray>

var arr = ndarray2array( y );
// returns [ [ 0.0, 0.0 ], [ 0.0, 0.0 ], [ 0.0, 0.0 ] ]

Notes

  • An output ndarray must be writable. If provided a read-only ndarray, the function throws an error.
  • A slice argument must be either a Slice, an integer, null, or undefined.
  • The number of slice dimensions must match the number of output array dimensions. Hence, if y is a zero-dimensional ndarray, then, if s is a MultiSlice, s should be empty, and, if s is an array, s should not contain any slice arguments. Similarly, if y is a one-dimensional ndarray, then, if s is a MultiSlice, s should have one slice dimension, and, if s is an array, s should contain a single slice argument. And so on and so forth.
  • The input ndarray must be broadcast compatible with the output ndarray view.
  • The input ndarray must have a data type which can be safely cast to the output ndarray data type. Floating-point data types (both real and complex) are allowed to downcast to a lower precision data type of the same kind (e.g., element values from a 'float64' input ndarray can be assigned to corresponding elements in a 'float32' output ndarray).

Examples

var E = require( '@stdlib/slice-multi' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var slice = require( '@stdlib/ndarray-slice' );
var sliceAssign = require( '@stdlib/ndarray-slice-assign' );

// Alias `null` to allow for more compact indexing expressions:
var _ = null;

// Create an output ndarray:
var y = ndzeros( [ 3, 3, 3 ] );

// Update each matrix...
var s1 = E( 0, _, _ );
sliceAssign( scalar2ndarray( 100 ), y, s1 );

var a1 = ndarray2array( slice( y, s1 ) );
// returns [ [ 100, 100, 100 ], [ 100, 100, 100 ], [ 100, 100, 100 ] ]

var s2 = E( 1, _, _ );
sliceAssign( scalar2ndarray( 200 ), y, s2 );

var a2 = ndarray2array( slice( y, s2 ) );
// returns [ [ 200, 200, 200 ], [ 200, 200, 200 ], [ 200, 200, 200 ] ]

var s3 = E( 2, _, _ );
sliceAssign( scalar2ndarray( 300 ), y, s3 );

var a3 = ndarray2array( slice( y, s3 ) );
// returns [ [ 300, 300, 300 ], [ 300, 300, 300 ], [ 300, 300, 300 ] ]

// Update the second rows in each matrix:
var s4 = E( _, 1, _ );
sliceAssign( scalar2ndarray( 400 ), y, s4 );

var a4 = ndarray2array( slice( y, s4 ) );
// returns [ [ 400, 400, 400 ], [ 400, 400, 400 ], [ 400, 400, 400 ] ]

// Update the second columns in each matrix:
var s5 = E( _, _, 1 );
sliceAssign( scalar2ndarray( 500 ), y, s5 );

var a5 = ndarray2array( slice( y, s5 ) );
// returns [ [ 500, 500, 500 ], [ 500, 500, 500 ], [ 500, 500, 500 ] ]

// Return the contents of the entire ndarray:
var a6 = ndarray2array( y );
/* returns
  [
    [
      [ 100, 500, 100 ],
      [ 400, 500, 400 ],
      [ 100, 500, 100 ]
    ],
    [
      [ 200, 500, 200 ],
      [ 400, 500, 400 ],
      [ 200, 500, 200 ]
    ],
    [
      [ 300, 500, 300 ],
      [ 400, 500, 400 ],
      [ 300, 500, 300 ]
    ]
  ]
*/

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.