@stdlib/ndarray-base-serialize-meta-data
v0.2.2
Published
Serialize ndarray meta data.
Downloads
60
Readme
Serialize Meta Data
Serialize ndarray meta data.
Installation
npm install @stdlib/ndarray-base-serialize-meta-data
Usage
var serialize = require( '@stdlib/ndarray-base-serialize-meta-data' );
serialize( x )
Serializes ndarray meta data.
var array = require( '@stdlib/ndarray-array' );
var arr = array( [ [ 1, 2 ], [ 3, 4 ] ] );
var dv = serialize( arr );
// returns <DataView>
Notes
Serialization is performed according to host byte order (endianness).
Meta data format:
| endianness (1 byte) | <dtype> (2 bytes) | <ndims> (8 bytes) | <shape> (ndims*8 bytes) | <strides> (ndims*8 bytes) | <offset> (8 bytes) | <order> (1 byte) | <mode> (1 byte) | <nsubmodes> (8 bytes) | <submodes> (nsubmodes*1 bytes) | <flags> (4 bytes) |
which translates to the following
ArrayBuffer
layout:ArrayBuffer[ <endianness>[int8], <dtype>[int16], <ndims>[int64], <shape>[ndims*int64], <strides>[ndims*int64], <offset>[int64], <order>[int8], <mode>[int8], <nsubmodes>[int64], <submodes>[nsubmodes*int8], <flags>[int32] ]
where
strides
andoffset
are in units of bytes.If the endianness is
1
, the byte order is little endian. If the endianness is0
, the byte order is big endian.Buffer length:
1 + 2 + 8 + (ndims*8) + (ndims*8) + 8 + 1 + 1 + 8 + (nsubmodes*1) + 4 = 33 + (ndims*16) + nsubmodes
For example, consider a three-dimensional ndarray with one subscript index mode (submode):
33 + (3*16) + 1 = 82 bytes
Examples
var IS_LITTLE_ENDIAN = require( '@stdlib/assert-is-little-endian' );
var array = require( '@stdlib/ndarray-array' );
var Uint8Array = require( '@stdlib/array-uint8' );
var fromInt64Bytes = require( '@stdlib/number-float64-base-from-int64-bytes' );
var serialize = require( '@stdlib/ndarray-base-serialize-meta-data' );
// Create an ndarray:
var x = array( [ [ 1, 2 ], [ 3, 4 ] ] );
// Print various properties:
console.log( 'dtype: %s', x.dtype );
console.log( 'ndims: %d', x.ndims );
console.log( 'shape: [ %s ]', x.shape.join( ', ' ) );
console.log( 'strides: [ %s ]', x.strides.join( ', ' ) );
console.log( 'offset: %d', x.offset );
console.log( 'order: %s', x.order );
// Serialize ndarray meta data to a DataView:
var dv = serialize( x );
// returns <DataView>
// Create a Uint8Array view:
var bytes = new Uint8Array( dv.buffer );
// Extract the data type (enum):
var dtype = dv.getInt16( 1, IS_LITTLE_ENDIAN );
console.log( 'dtype (enum): %d', dtype );
// Extract the number of dimensions:
var ndims = fromInt64Bytes( bytes, 1, 3 );
console.log( 'ndims: %d', ndims );
// Extract the shape:
var shape = [];
var i;
for ( i = 0; i < ndims; i++ ) {
shape.push( fromInt64Bytes( bytes, 1, 11+(i*8) ) );
}
console.log( 'shape: [ %s ]', shape.join( ', ' ) );
// Extract the strides (in units of bytes):
var strides = [];
for ( i = 0; i < ndims; i++ ) {
strides.push( fromInt64Bytes( bytes, 1, 11+(ndims*8)+(i*8) ) );
}
console.log( 'strides (bytes): [ %s ]', strides.join( ', ' ) );
// Extract the index offset (in bytes):
var offset = fromInt64Bytes( bytes, 1, 11+(ndims*16) );
console.log( 'offset (bytes): %d', offset );
// Extract the order (enum):
var order = dv.getInt8( 19+(ndims*16) );
console.log( 'order (enum): %d', order );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.