@stdlib/math-base-tools-evalrationalf
v0.1.1
Published
Evaluate a rational function using single-precision floating-point arithmetic.
Downloads
18
Readme
evalrationalf
Evaluate a rational function using single-precision floating-point arithmetic.
A rational function f(x)
is defined as
where both P(x)
and Q(x)
are polynomials in x
. A polynomial in x
can be expressed
where c_n, c_{n-1}, ..., c_0
are constants.
Installation
npm install @stdlib/math-base-tools-evalrationalf
Usage
var evalrationalf = require( '@stdlib/math-base-tools-evalrationalf' );
evalrationalf( P, Q, x )
Evaluates a rational function at a value x
using single-precision floating-point arithmetic.
var Float32Array = require( '@stdlib/array-float32' );
var P = new Float32Array( [ -6.0, -5.0 ] );
var Q = new Float32Array( [ 3.0, 0.5 ] );
var v = evalrationalf( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
// returns -6.0
For polynomials of different degree, the coefficient array for the lower degree polynomial should be padded with zeros.
var Float32Array = require( '@stdlib/array-float32' );
// 2x^3 + 4x^2 - 5x^1 - 6x^0 => degree 4
var P = new Float32Array( [ -6.0, -5.0, 4.0, 2.0 ] );
// 0.5x^1 + 3x^0 => degree 2
var Q = new Float32Array( [ 3.0, 0.5, 0.0, 0.0 ] ); // zero-padded
var v = evalrationalf( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 + 4*6^2 + 2*6^3 ) / ( 3*6^0 + 0.5*6^1 + 0*6^2 + 0*6^3 ) = (-6-30+144+432)/(3+3)
// returns ~90.0
Coefficients should be ordered in ascending degree, thus matching summation notation.
evalrationalf.factory( P, Q )
Uses code generation to in-line coefficients and return a function for evaluating a rational function using single-precision floating-point arithmetic.
var Float32Array = require( '@stdlib/array-float32' );
var P = new Float32Array( [ 20.0, 8.0, 3.0 ] );
var Q = new Float32Array( [ 10.0, 9.0, 1.0 ] );
var rational = evalrationalf.factory( P, Q );
var v = rational( 10.0 ); // => (20*10^0 + 8*10^1 + 3*10^2) / (10*10^0 + 9*10^1 + 1*10^2) = (20+80+300)/(10+90+100)
// returns 2.0
v = rational( 2.0 ); // => (20*2^0 + 8*2^1 + 3*2^2) / (10*2^0 + 9*2^1 + 1*2^2) = (20+16+12)/(10+18+4)
// returns 1.5
Notes
- The coefficients
P
andQ
are expected to be arrays of the same length. - For hot code paths in which coefficients are invariant, a compiled function will be more performant than
evalrationalf()
. - While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict content security policy (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-base-uniform' );
var evalrationalf = require( '@stdlib/math-base-tools-evalrationalf' );
// Create two arrays of random coefficients...
var opts = {
'dtype': 'float32'
};
var P = discreteUniform( 10, -100, 100, opts );
var Q = discreteUniform( 10, -100, 100, opts );
// Evaluate the rational function at random values...
var v;
var i;
for ( i = 0; i < 100; i++ ) {
v = uniform( 0.0, 100.0 );
console.log( 'f(%d) = %d', v, evalrationalf( P, Q, v ) );
}
// Generate an `evalrationalf` function...
var rational = evalrationalf.factory( P, Q );
for ( i = 0; i < 100; i++ ) {
v = uniform( -50.0, 50.0 );
console.log( 'f(%d) = %d', v, rational( v ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
Copyright
Copyright © 2016-2024. The Stdlib Authors.