npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/math-base-tools-evalrationalf

v0.1.1

Published

Evaluate a rational function using single-precision floating-point arithmetic.

Downloads

18

Readme

evalrationalf

NPM version Build Status Coverage Status

Evaluate a rational function using single-precision floating-point arithmetic.

A rational function f(x) is defined as

where both P(x) and Q(x) are polynomials in x. A polynomial in x can be expressed

where c_n, c_{n-1}, ..., c_0 are constants.

Installation

npm install @stdlib/math-base-tools-evalrationalf

Usage

var evalrationalf = require( '@stdlib/math-base-tools-evalrationalf' );

evalrationalf( P, Q, x )

Evaluates a rational function at a value x using single-precision floating-point arithmetic.

var Float32Array = require( '@stdlib/array-float32' );

var P = new Float32Array( [ -6.0, -5.0 ] );
var Q = new Float32Array( [ 3.0, 0.5 ] );

var v = evalrationalf( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
// returns -6.0

For polynomials of different degree, the coefficient array for the lower degree polynomial should be padded with zeros.

var Float32Array = require( '@stdlib/array-float32' );

// 2x^3 + 4x^2 - 5x^1 - 6x^0 => degree 4
var P = new Float32Array( [ -6.0, -5.0, 4.0, 2.0 ] );

// 0.5x^1 + 3x^0 => degree 2
var Q = new Float32Array( [ 3.0, 0.5, 0.0, 0.0 ] ); // zero-padded

var v = evalrationalf( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 + 4*6^2 + 2*6^3 ) / ( 3*6^0 + 0.5*6^1 + 0*6^2 + 0*6^3 ) = (-6-30+144+432)/(3+3)
// returns ~90.0

Coefficients should be ordered in ascending degree, thus matching summation notation.

evalrationalf.factory( P, Q )

Uses code generation to in-line coefficients and return a function for evaluating a rational function using single-precision floating-point arithmetic.

var Float32Array = require( '@stdlib/array-float32' );

var P = new Float32Array( [ 20.0, 8.0, 3.0 ] );
var Q = new Float32Array( [ 10.0, 9.0, 1.0 ] );

var rational = evalrationalf.factory( P, Q );

var v = rational( 10.0 ); // => (20*10^0 + 8*10^1 + 3*10^2) / (10*10^0 + 9*10^1 + 1*10^2) = (20+80+300)/(10+90+100)
// returns 2.0

v = rational( 2.0 ); // => (20*2^0 + 8*2^1 + 3*2^2) / (10*2^0 + 9*2^1 + 1*2^2) = (20+16+12)/(10+18+4)
// returns 1.5

Notes

  • The coefficients P and Q are expected to be arrays of the same length.
  • For hot code paths in which coefficients are invariant, a compiled function will be more performant than evalrationalf().
  • While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict content security policy (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-base-uniform' );
var evalrationalf = require( '@stdlib/math-base-tools-evalrationalf' );

// Create two arrays of random coefficients...
var opts = {
    'dtype': 'float32'
};
var P = discreteUniform( 10, -100, 100, opts );
var Q = discreteUniform( 10, -100, 100, opts );

// Evaluate the rational function at random values...
var v;
var i;
for ( i = 0; i < 100; i++ ) {
    v = uniform( 0.0, 100.0 );
    console.log( 'f(%d) = %d', v, evalrationalf( P, Q, v ) );
}

// Generate an `evalrationalf` function...
var rational = evalrationalf.factory( P, Q );
for ( i = 0; i < 100; i++ ) {
    v = uniform( -50.0, 50.0 );
    console.log( 'f(%d) = %d', v, rational( v ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


Copyright

Copyright © 2016-2024. The Stdlib Authors.