@stdlib/math-base-special-erfcinv
v0.2.3
Published
Inverse complementary error function.
Downloads
142,439
Readme
erfcinv
The inverse complementary error function is defined as
where erf^{-1}(z)
is the inverse error function.
Installation
npm install @stdlib/math-base-special-erfcinv
Usage
var erfcinv = require( '@stdlib/math-base-special-erfcinv' );
erfcinv( x )
Evaluates the inverse complementary error function.
var y = erfcinv( 0.5 );
// returns ~0.4769
y = erfcinv( 0.8 );
// returns ~0.1791
y = erfcinv( 0.0 );
// returns Infinity
y = erfcinv( 2.0 );
// returns -Infinity
The domain of x
is restricted to [0,2]
. If x
is outside this interval, the function returns NaN
.
var y = erfcinv( -3.14 );
// returns NaN
If provided NaN
, the function returns NaN
.
var y = erfcinv( NaN );
// returns NaN
Examples
var linspace = require( '@stdlib/array-base-linspace' );
var erfcinv = require( '@stdlib/math-base-special-erfcinv' );
var x = linspace( 0.0, 2.0, 100 );
var i;
for ( i = 0; i < x.length; i++ ) {
console.log( 'x: %d, erfcinv(x): %d', x[ i ], erfcinv( x[ i ] ) );
}
C APIs
Usage
#include "stdlib/math/base/special/erfcinv.h"
stdlib_base_erfcinv( x )
Evaluates the inverse complementary error function.
double out = stdlib_base_erfcinv( 0.5 );
// returns ~0.4769
out = stdlib_base_erfcinv( 0.8 );
// returns ~0.1791
The function accepts the following arguments:
- x:
[in] double
input value.
double stdlib_base_erfcinv( const double x );
Examples
#include "stdlib/math/base/special/erfcinv.h"
#include <stdio.h>
int main( void ) {
const double x[] = { 0.0, 0.22, 0.44, 0.67, 0.89, 1.11, 1.33, 1.56, 1.78, 2.0 };
double v;
int i;
for ( i = 0; i < 10; i++ ) {
v = stdlib_base_erfcinv( x[ i ] );
printf( "x: %lf, erfcinv(x): %lf\n", x[ i ], v );
}
}
See Also
@stdlib/math-base/special/erf
: error function.@stdlib/math-base/special/erfc
: complementary error function.@stdlib/math-base/special/erfinv
: inverse error function.@stdlib/math-base/special/erfcx
: scaled complementary error function.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
Copyright
Copyright © 2016-2024. The Stdlib Authors.